【題目】在三棱柱中,平面,,點(diǎn)、分別在棱、上,且,,,.
(1)求證:平面;
(2)求直線(xiàn)與平面所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)要證平面,只需證垂直于該面中的兩條相交直線(xiàn)即可,通過(guò)三角形的相似,和線(xiàn)面垂直可證得,,從而可證得線(xiàn)面垂直;
(2) 要求出直線(xiàn)與平面所成角的正弦值,關(guān)鍵在于需求出點(diǎn)到平面的距離,運(yùn)用三棱錐的等積法,可求得點(diǎn)到平面的距離,從而求得直線(xiàn)與平面所成角的正弦值.
(1)證明:如圖, ∵平面,平面,∴,
又∵,∴,且,平面,平面,∴平面,
又∵點(diǎn)、分別在棱、上,且,,,∴,
∴平面,又∵平面,∴,
在矩形中,,∴,∴,
且,平面,平面,∴平面,
所以平面;
(2)設(shè)點(diǎn)到在平面的距離為,則有,而由(1)得平面,∴,而,,
由(1)可得平面,∴點(diǎn)到平面的距離為的長(zhǎng),
∴,而,
設(shè)直線(xiàn)與平面所成角為,則,
所以直線(xiàn)與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐中,,,.
(1)求證:;
(2)若二面角的大小為且時(shí),求的中線(xiàn)與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(Ⅰ)用表示甲同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在7:30之前到校的天數(shù)比乙同學(xué)在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于項(xiàng)數(shù)為m(且)的有窮正整數(shù)數(shù)列,記,即為中的最小值,設(shè)由組成的數(shù)列稱(chēng)為的“新型數(shù)列”.
(1)若數(shù)列為2019,2020,2019,2018,2017,請(qǐng)寫(xiě)出的“新型數(shù)列”的所有項(xiàng);
(2)若數(shù)列滿(mǎn)足,且其對(duì)應(yīng)的“新型數(shù)列”項(xiàng)數(shù),求的所有項(xiàng)的和;
(3)若數(shù)列的各項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求符合條件的及其對(duì)應(yīng)的“新型數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列,為其前項(xiàng)的和,滿(mǎn)足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:當(dāng),時(shí);
(3)已知當(dāng),且時(shí)有,其中,求滿(mǎn)足的所有的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面、E為的中點(diǎn),,,,.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線(xiàn)方程;
(2)若不等式恒成立,求k的取值范圍;
(3)函數(shù),設(shè),記在上得最大值為,當(dāng)最小時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】節(jié)能環(huán)保日益受到人們的重視,水污染治理也已成為“十三五”規(guī)劃的重要議題.某地有三家工廠,分別位于矩形的兩個(gè)頂點(diǎn)、及的中點(diǎn)處,,,為了處理三家工廠的污水,現(xiàn)要在該矩形區(qū)域上(含邊界),且與、等距離的一點(diǎn)處,建造一個(gè)污水處理廠,并鋪設(shè)三條排污管道、、.設(shè)∠BAO=x(弧度),排污管道的總長(zhǎng)度為.
(1)將表示為的函數(shù);
(2)試確定點(diǎn)的位置,使鋪設(shè)的排污管道的總長(zhǎng)度最短,并求總長(zhǎng)度的最短公里數(shù)(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn),它的一個(gè)焦點(diǎn)與拋物線(xiàn)E:的焦點(diǎn)重合,斜率為k的直線(xiàn)l交拋物線(xiàn)E于A、B兩點(diǎn),交橢圓于C、D兩點(diǎn).
(1)求橢圓的方程;
(2)直線(xiàn)l經(jīng)過(guò)點(diǎn),設(shè)點(diǎn),且的面積為,求k的值;
(3)若直線(xiàn)l過(guò)點(diǎn),設(shè)直線(xiàn),的斜率分別為,,且,,成等差數(shù)列,求直線(xiàn)l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com