【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面、E為的中點(diǎn),,,,.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)取中點(diǎn)F,連結(jié),,先證四邊形為平行四邊形,進(jìn)而可得,進(jìn)而可得平面;
(2)建立空間直角坐標(biāo)系,求出平面和平面的法向量,利用兩法向量所成角的余弦值可得二面角的余弦值.
(1)如圖,取中點(diǎn)F,連結(jié),.
因?yàn)?/span>E為中點(diǎn),,所以,.
又因?yàn)?/span>,,所以,,
所以四邊形為平行四邊形.
所以.
又因?yàn)?/span>平面,平面,
所以平面.
(2)取中點(diǎn)O,連結(jié),.
因?yàn)?/span>為等邊三角形,所以.
又因?yàn)槠矫?/span>平面,平面平面,
所以平面.
因?yàn)?/span>,,
所以四邊形為平行四邊形.
因?yàn)?/span>,所以.
如圖建立空間直角坐標(biāo)系,
則,,,,.
所以,,
設(shè)平面的一個法向量為,
則即令,則,
顯然,平面的一個法向量為,
則即令,則,
所以.
由題知,二面角為銳角,
所以二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,是橢圓:上的三點(diǎn),其中的坐標(biāo)為,過橢圓的中心,且橢圓長軸的一個端點(diǎn)與短軸的兩個端點(diǎn)構(gòu)成正三角形.
(1)求橢圓的方程;
(2)當(dāng)直線的斜率為1時,求面積;
(3)設(shè)直線:與橢圓交于兩點(diǎn),,且線段的中垂線過橢圓與軸負(fù)半軸的交點(diǎn),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,是邊長為的正方形.且,點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求平面與平面所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的周期為,圖象的一個對稱中心為,將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個單位長度后得到函數(shù)的圖象.
(1)求函數(shù)與的解析式;
(2)求證:存在,使得,,能按照某種順序成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左,右焦點(diǎn)分別為,,點(diǎn)P為雙曲線C右支上異于頂點(diǎn)的一點(diǎn),的內(nèi)切圓與x軸切于點(diǎn),則a的值為______,若直線經(jīng)過線段的中點(diǎn)且垂直于線段,則雙曲線C的方程為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊鐵皮零件,其形狀是由邊長為的正方形截去一個三角形所得的五邊形,其中,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮,使得矩形相鄰兩邊分別落在上,另一頂點(diǎn)落在邊或邊上.設(shè),矩形的面積為.
(1)試求出矩形鐵皮的面積關(guān)于的函數(shù)解析式,并寫出定義域;
(2)試問如何截。取何值時),可使得到的矩形的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的兩焦點(diǎn)與橢圓短軸的一個端點(diǎn)構(gòu)成等邊三角形,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓C交于A,B兩點(diǎn)的直線l:,使得成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點(diǎn)為,其短軸上的一個端點(diǎn)到F的距離為.
(I)求橢圓C的方程和其“準(zhǔn)圓”方程;
(II )點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個動點(diǎn),過點(diǎn)P作直線,使得與橢圓C都只有一個交點(diǎn),且分別交其“準(zhǔn)圓”于點(diǎn)M,N.
(1)當(dāng)P為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時,求的方程;
(2)求證:|MN|為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com