【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,橢圓的兩焦點(diǎn)與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,右焦點(diǎn)到右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓C交于A,B兩點(diǎn)的直線(xiàn)l:,使得成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在;實(shí)數(shù)m的取值范圍是
【解析】
(1)設(shè)橢圓的頂點(diǎn)為P,則,又由,由結(jié)合橢圓的定義可得,結(jié)合可求橢圓的方程;
(2)存在直線(xiàn)l,使得成立.設(shè)直線(xiàn)l的方程為,由得.由此利用根的判別式和韋達(dá)定理結(jié)合已知條件能求出實(shí)數(shù)m的取值范圍.
(1)設(shè)橢圓的頂點(diǎn)為P,
由兩焦點(diǎn)與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,
可得,
又右焦點(diǎn)到右頂點(diǎn)的距離為1.
,
,,,
橢圓的方程為:;
(2)存在直線(xiàn)l,使得成立.理由如下:
設(shè)直線(xiàn)l的方程為,
由得.
,化簡(jiǎn)得.
設(shè),,則
,.
若成立,
即,等價(jià)于.
所以.
,
,
,
化簡(jiǎn)得.即,
代入中,,
解得.
又由,得,
從而,
解得或.
所以實(shí)數(shù)m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為.
(1)設(shè)橢圓的左右焦點(diǎn)分別為、,點(diǎn)在橢圓上運(yùn)動(dòng),求的值;
(2)設(shè)直線(xiàn)和圓相切,和橢圓交于、兩點(diǎn),為原點(diǎn),線(xiàn)段、分別和圓交于、兩點(diǎn),設(shè)、的面積分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面、E為的中點(diǎn),,,,.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè),(其中是的導(dǎo)數(shù)),求的最小值;
(2)設(shè),若有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】節(jié)能環(huán)保日益受到人們的重視,水污染治理也已成為“十三五”規(guī)劃的重要議題.某地有三家工廠(chǎng),分別位于矩形的兩個(gè)頂點(diǎn)、及的中點(diǎn)處,,,為了處理三家工廠(chǎng)的污水,現(xiàn)要在該矩形區(qū)域上(含邊界),且與、等距離的一點(diǎn)處,建造一個(gè)污水處理廠(chǎng),并鋪設(shè)三條排污管道、、.設(shè)∠BAO=x(弧度),排污管道的總長(zhǎng)度為.
(1)將表示為的函數(shù);
(2)試確定點(diǎn)的位置,使鋪設(shè)的排污管道的總長(zhǎng)度最短,并求總長(zhǎng)度的最短公里數(shù)(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和滿(mǎn)足:,,,且對(duì)一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和;
(3)設(shè)(),記數(shù)列的前n項(xiàng)和為,問(wèn):是否存在正整數(shù),對(duì)一切,均有恒成立.若存在,求出所有正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正三棱柱中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),所有的棱長(zhǎng)都為.
(1)求證:;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線(xiàn)型公路、,海岸邊界近似地看成一條曲線(xiàn)段.為開(kāi)發(fā)旅游資源,需修建一條連接兩條公路的直線(xiàn)型觀(guān)光大道,且直線(xiàn)與曲線(xiàn)有且僅有一個(gè)公共點(diǎn)P(即直線(xiàn)與曲線(xiàn)相切),如圖所示.若曲線(xiàn)段是函數(shù)圖像的一段,點(diǎn)M到、的距離分別為8千米和1千米,點(diǎn)N到的距離為10千米,點(diǎn)P到的距離為2千米.以、分別為x,y軸建立如圖所示的平面直角坐標(biāo)系.
(1)求曲線(xiàn)段的函數(shù)關(guān)系式,并指出其定義域;
(2)求直線(xiàn)的方程,并求出公路的長(zhǎng)度(結(jié)果精確到1米).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李克強(qiáng)總理在很多重大場(chǎng)合都提出“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬(wàn)元做創(chuàng)業(yè)資金,每月獲得的利潤(rùn)是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤(rùn))的,每月的生活費(fèi)等開(kāi)支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營(yíng).如此每月循環(huán)繼續(xù).
(1)問(wèn)到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)
(2)如果銀行貸款的年利率為,問(wèn)該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com