已知函數(shù)f(x)滿(mǎn)足對(duì)任意的x∈R都有f(
1
2
+x)+f(
1
2
-x)=1成立,則f(
1
8
)+f(
2
8
)+…+f(
7
8
)=
 
考點(diǎn):函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意得兩個(gè)式子相加可得[f(
1
8
)+f(
7
8
)]+[f
2
8
)+f(
6
8
)]+…+[f(
7
8
)+f(
1
8
)]=2M,利用f(
1
2
+x)+f(
1
2
-x)=1,推出f(
1
8
)+f(
2
8
)+…+f(
7
8
)=7
解答: 解:設(shè)f(
1
8
)+f(
2
8
)+…+f(
7
8
)=M…①
所以f(
7
8
)+f(
6
8
)+…+f(
1
8
)=M…②
①+②可得[f(
1
8
)+f(
7
8
)]+[f
2
8
)+f(
6
8
)]+…+[f(
7
8
)+f(
1
8
)]=2M,
因?yàn)楹瘮?shù)f(x)滿(mǎn)足對(duì)任意的x∈R都有f(
1
2
+x)+f(
1
2
-x)=1成立
所以7=2M即M=
7
2
,
所以f(
1
8
)+f(
2
8
)+…+f(
7
8
)=
7
2

故答案為:
7
2
點(diǎn)評(píng):本題考查了利用函數(shù)的對(duì)稱(chēng)性求和,解決本題的關(guān)鍵是發(fā)現(xiàn)函數(shù)與和式的對(duì)稱(chēng)性,利用倒敘相加法求和.此法在數(shù)列部分常見(jiàn),也是一種求和的重要方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與直線(xiàn)2x-6y+1=0垂直且和函數(shù)f(x)=x3-3x相切的直線(xiàn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=exln|x|-1的零點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用4種不同的顏色給圖中A、B、C、D四個(gè)區(qū)域涂色,要求相鄰的區(qū)域涂色不同,則不同的涂色方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)x=2及x=4與函數(shù)y=log2x圖象的交點(diǎn)分別為A,B,與函數(shù)y=lgx圖象的交點(diǎn)分別為C,D,則直線(xiàn)AB與CD( 。
A、平行B、垂直C、不確定D、相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

運(yùn)行如圖所示的程序框圖,輸出A,B,C的一組數(shù)據(jù)為 
3
,-1,2,則在兩個(gè)判斷框內(nèi)的橫線(xiàn)上分別應(yīng)填( 。
A、垂直、相切
B、平行、相交
C、垂直、相離
D、平行、相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2,-2
3
),
b
=(-7,0),則
a
b
的夾角為( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若對(duì)任意的λ∈R,都有|
AB
AC
|≥|
BC
|,則△ABC( 。
A、一定為銳角三角形
B、一定為鈍角三角形
C、一定為直角三角形
D、可以為任意三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案