【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為萬元,當(dāng)年產(chǎn)量不足80千件時(shí), (萬元);當(dāng)年產(chǎn)量不少于80千件時(shí), (萬元).通過市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠年內(nèi)生產(chǎn)的商品能全部銷售完.

(1)寫出年利潤 (萬元)關(guān)于年產(chǎn)量 (千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

【答案】(1);(2)千件時(shí),所獲利潤最大.

【解析】試題分析:(1)分兩種情況進(jìn)行研究,當(dāng)時(shí),投入成本為萬元),根據(jù)年利潤=銷售收入-成本,列出函數(shù)關(guān)系式,當(dāng)時(shí),投入成本為根據(jù)年利潤=銷售收入-成本,列出函數(shù)關(guān)系式,最后寫成分段函數(shù)的形式,從而得到答案;(2)根據(jù)年利潤的解析式,分段研究函數(shù)的最值,當(dāng)時(shí)利用二次函數(shù)求最值,當(dāng)時(shí),利用基本不等式求最值,最后比較兩個(gè)最值,即可得到答案.謂.

試題解析 時(shí),當(dāng) 時(shí), , .

,

綜上所述,當(dāng)x=100時(shí),L(X)取得最大值1000,即年產(chǎn)量為100千件時(shí),該廠在這一商品生產(chǎn)中所獲利潤最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線上兩點(diǎn)的極坐標(biāo)分別為.

(1)設(shè)為線段上的動(dòng)點(diǎn),求線段取得最小值時(shí),點(diǎn)的直角坐標(biāo);

(2)求以為為直徑的圓的參數(shù)方程,并求在(1)條件下直線與圓相交所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(
A.如果兩條直線l1與l2垂直,那么它們的斜率之積一定等于﹣1
B.“a>0,b>0”是“ + ≥2”的充分必要條件
C.命題“若x=y,則sinx=siny”的逆否命題為真命題
D.“a≠﹣5或b≠5”是“a+b≠0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x+2sin2x+2sinx.

(1)將函數(shù)f(2x)的圖象向右平移個(gè)單位得到函數(shù)g(x)的圖象,x,求函數(shù)g(x)的值域;

(2)已知a,b,c分別為ABC中角A,B,C的對(duì)邊,且滿足f(A)=+1,A,a=2,b=2,ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)若函數(shù)處取得極小值,設(shè)此時(shí)函數(shù)的極大值為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足:a1=1,an+1=3an , n∈N* . 設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=bnlog3an , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:函數(shù)的圖象關(guān)于直線對(duì)稱,且當(dāng)時(shí)是函數(shù)的導(dǎo)函數(shù))成立.若,則的大小關(guān)系是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, .

(Ⅰ)若的必要條件,求實(shí)數(shù)的取值范圍;

(Ⅱ)若,“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=log2(x2﹣3x+2)的遞減區(qū)間是(
A.(﹣∞,1)
B.(2,+∞)
C.(﹣∞,
D.( ,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案