函數(shù)f(x)的圖象與函數(shù)y=ln(x-1)(x>2)的圖象關(guān)于直線y=x對稱,則f(x)為


  1. A.
    f(x)=ex+1(x>0)
  2. B.
    f(x)=ex-1(x>1)
  3. C.
    f(x)=ex+1(x∈R)
  4. D.
    f(x)=ex+1(x>0)
D
分析:據(jù)關(guān)于直線y=x對稱的兩個函數(shù)互為反函數(shù);將 看成關(guān)于x的方程求出x,再將x,y互換,可得答案.
解答:∵f(x)的圖象與函數(shù)y=ln(x-1)(x>2)的圖象關(guān)于直線y=x對稱
所以y=f(x)的圖象與函數(shù)y=ln(x-1)(x>2)互為反函數(shù)
由 函數(shù)y=ln(x-1)(x>2)得x=ey+1(y>0)
所以 函數(shù)y=ln(x-1)(x>2)的反函數(shù)為y=ex+1(x>0).
故選D.
點(diǎn)評:本題考查互為反函數(shù)的圖象關(guān)于y=x對稱、考查反函數(shù)的求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1,其中a>0.
(1)若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有公共點(diǎn),且在公共點(diǎn)處有相同的切線,試求實(shí)數(shù)a的值;
(2)在區(qū)間(0,
1
2
]上至少存在一個實(shí)數(shù)x0,使f(x0)>g(x0)成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,判斷函數(shù)f(x)的圖象與x軸公共點(diǎn)的個數(shù);
(2)證明:若對x1,x2且x1<x2,f(x1)≠f(x2),則方程f(x)=
f(x1)+f(x2)2
必有一實(shí)根在區(qū)間(x1,x2)內(nèi);
(3)在(1)的條件下,設(shè)f(x)=0的另一根為x0,若方程f(x)+a=0有解證明-2<x0≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-12x,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+
1
x
+2
的圖象關(guān)于點(diǎn)A(0,1)對稱,則當(dāng)x∈[
1
3
,2]
時(shí),f(x)的值域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[1,+∞)上的函數(shù)f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
當(dāng)x∈[2n-1,2n](n∈N*)時(shí),函數(shù)f(x)的圖象與x軸圍成的圖形面積為S,則S=( 。

查看答案和解析>>

同步練習(xí)冊答案