如圖,在四棱錐中,底面是正方形,⊥平面,, ,分別是,的中點(diǎn).
(Ⅰ) 求證:
(Ⅱ)求點(diǎn)到平面的距離.
(1)證明見(jiàn)解析;(2).
解析試題分析:(1)證明線線垂直時(shí),要注意題中隱含的垂直關(guān)系,如等腰三角形的底邊上的高,中線和頂角的角平分線合一、矩形的內(nèi)角、直徑所對(duì)的圓周角、菱形的對(duì)角線互相垂直、直角三角形等等;(2)利用棱錐的體積公式求體積.(3)證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質(zhì)定理;三是平行線法(若兩條平行線中的一條垂直于這個(gè)平面,則另一條也垂直于這個(gè)平面.解題時(shí),注意線線、線面與面面關(guān)系的相互轉(zhuǎn)化.(4)在求三棱柱體積時(shí),選擇適當(dāng)?shù)牡鬃鳛榈酌,這樣體積容易計(jì)算.
試題解析:證明:(Ⅰ) ,是的中點(diǎn)
⊥平面
且
平面 平面
平面 6分
(Ⅱ)設(shè)點(diǎn)到平面的距離為,利用體積法,
故點(diǎn)到平面的距離為 12分
考點(diǎn):(1)直線與直線垂直;(2)點(diǎn)到平面的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知:中,于,三邊分別是,則有;類比上述結(jié)論,寫出下列條件下的結(jié)論:四面體中,,的面積分別是,二面角的度數(shù)分別是,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,四邊形是正方形,,,分別為的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的平面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐P—ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn).已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DFE;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在平行四邊形中,,.將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在長(zhǎng)方體中,=,,點(diǎn)為棱的中點(diǎn),則二面角的大小為 (結(jié)果用反三角函數(shù)值表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com