如圖,在三棱錐P—ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn).已知PA⊥AC,PA=6,BC=8,DF=5.

求證:(1)直線PA∥平面DFE;
(2)平面BDE⊥平面ABC.

(1)詳見解析; (2) 詳見解析.

解析試題分析:(1) 由線面平行的判定定理可知,只須證PA與平面DEF內(nèi)的某一條直線平行即可,由已知及圖形可知應(yīng)選擇DE,由三角形的中位線的性質(zhì)易知: DE∥PA ,從而問題得證;注意線PA在平面DEG外,而DE在平面DEF內(nèi)必須寫清楚;(2) 由面面垂直的判定定理可知,只須證兩平中的某一直線與另一個(gè)平面垂直即可,注意題中已知了線段的長(zhǎng)度,那就要注意利用勾股定理的逆定理來證明直線與直線的垂直;通過觀察可知:應(yīng)選擇證DE垂直平面ABC較好,由(1)可知:DE⊥AC,再就只須證DE⊥EF即可;這樣就能得到DE⊥平面ABC,又DE平面BDE,從面而有平面BDE⊥平面ABC.
試題解析:(1)因?yàn)镈,E分別為PC,AC的中點(diǎn),所以DE∥PA.
又因?yàn)镻A平面DEF,DE平面DEF,所以直線PA∥平面DEF.
(2)因?yàn)镈,E,F(xiàn)分別人棱PC,AC,AB的中點(diǎn),PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.
又因?yàn)镈F=5,故DF2=DE2+EF2,所以∠DEF=90。,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.
因?yàn)锳C∩EF=E,AC平面ABC,EF平面ABC,所以DE⊥平面ABC.
又DE平面BDE,所以平面BDE⊥平面ABC.
考點(diǎn):1.線面平行;2.面面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形,⊥平面,, ,分別是,的中點(diǎn).
(Ⅰ) 求證:
(Ⅱ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面平面,四邊形為矩形,的中點(diǎn),.(1)求證:;(2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐的底面為直角梯形,,底面,且,,的中點(diǎn).

(1)證明:面;
(2)求所成的角的余弦值;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在斜三棱柱中,側(cè)面,,底面是邊長(zhǎng)為的正三角形,其重心為點(diǎn),是線段上一點(diǎn),且

(1)求證:側(cè)面;
(2)求平面與底面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱柱中,已知平面平面,.
(1)求證:
(2)若為棱上的一點(diǎn),且平面,求線段的長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,⊥平面,,分別為線段的中點(diǎn).

(1)求證:∥平面;    
(2)求證:⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面
底面,且,、分別為的中點(diǎn).

(1)求證:平面;   
(2)求證:面平面;
(3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

棱長(zhǎng)為1的正方體和它的外接球與一個(gè)平面相交得到的截面是一個(gè)圓及它的內(nèi)接正三角形,那么球心到截面的距離等于   ▲ .

查看答案和解析>>

同步練習(xí)冊(cè)答案