精英家教網 > 高中數學 > 題目詳情

【題目】已知定義在R上的函數f(x)是奇函數,且滿足f(x)=f(x+3),f(-2)=-3.若數列{an}中,a1=-1,且前n項和Sn滿足=2×+1,則f(a5)+f(a6)=________.

【答案】3

【解析】∵函數f(x)是奇函數,

∴f(-x)=-f(x),f(0)=0.

∵f(x)=f(x+3),

∴f(x)是以3為周期的周期函數.

∵Sn=2an+n,

∴Sn-1=2an-1+(n-1)(n≥2),

兩式相減并整理得an=2an-1-1,即an-1=2(an-1-1)(n≥2),

∴數列{an-1}是以2為公比的等比數列,

首項為a1-1=-2,

∴an-1=-2×2n-1=-2n,an=-2n+1,

∴a5=-31,a6=-63,

∴f(a5)+f(a6)=f(-31)+f(-63)=f(2)+f(0)=f(2)=-f(-2)=3.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】關于函數,給出下列命題:

若函數f(x)是R上周期為3的偶函數,且滿足f(1)=1,則f(2)-f(-4)=0;

若函數f(x)滿足f(x+1)f(x)=2 017,則f(x)是周期函數;

若函數g(x)=是偶函數,則f(x)=x+1;

函數y=的定義域為.

其中正確的命題是________.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,圓的方程為為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為.

I)當時,判斷直線的關系;

II)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種商品每件進價9元,售價20元,每天可賣出69件.若售價降低,銷售量可以增加,且售價降低元時,每天多賣出的件數與成正比.已知商品售價降低3元時,一天可多賣出36件.

(試將該商品一天的銷售利潤表示成的函數;(該商品售價為多少元時一天的銷售利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列為等差數列, ,公差,且其中的三項成等比.

(1)求數列的通項公式以及它的前n項和;

(2)若數列滿足為數列的前項和,

3(2)的條件下,若不等式)恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求曲線處的切線方程;

(2)設函數,求函數的單調區(qū)間;

(3)若,在上存在一點,使得成立,

的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。

(1)求證:EG⊥DF;

(2)求BE與平面EFGH所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小明準備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學的數學知識制定一個方案來決定去哪個景點:(如圖)曲線和直線交于點.以為起點,再從曲線上任取兩個點分別為終點得到兩個向量,記這兩個向量的數量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

(1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點作為向量的終點,則小明決定去武夷山.點在曲線上運動,若點的坐標為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,若在區(qū)間上任取三個數、、,均存在以、為邊長的三角形,則實數的取值范圍為__________

查看答案和解析>>

同步練習冊答案