【題目】已知A(4,-3),B(2,-1)和直線l:4x+3y-2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點P滿足|PA|=|PB|且點P到直線l的距離為2的坐標(biāo).
【答案】(1) (2)
【解析】試題分析:(1)由題意可知|PA|=|PB|即點P為線段AB的中垂線,所過點P的軌跡為過AB中點,斜率滿足。(2)由(1)可知點P的方程x-y-5=0,
設(shè)點P的坐標(biāo)為(a,b),再由點到直線的距離公式和點在直線x-y-5=0,列方程組可解。
試題解析:(1)∵A(4,-3),B(2,-1),
∴線段AB的中點M的坐標(biāo)為(3,-2),又
∴線段AB的垂直平分線方程為y+2=x-3,
即點P的方程x-y-5=0.
(2)設(shè)點P的坐標(biāo)為(a,b),
∵點P(a,b)在上述直線上,∴a-b-5=0.①
又點P(a,b)到直線l:4x+3y-2=0的距離為2,
∴=2,即4a+3b-2=±10,②
聯(lián)立①②可得或
∴所求點P的坐標(biāo)為(1,-4)或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.
(1)求橢圓的方程;
(2)若分別是橢圓長軸的左、右端點,動點滿足,連結(jié),交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:某污水處理廠要在一個矩形污水處理池()的池底水平鋪設(shè)污水凈化管道(是直角頂點)來處理污水,管道越長污水凈化效果越好,設(shè)計要求管道的的接口是的中點,分別落在線段上。已知米,米,記.
(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;
(2)若,求此時管道的長度;
(3)當(dāng)取何值時,污水凈化效果最好?并求出此時管道的長度。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏,將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.
(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認為選手成績“優(yōu)秀”與文化程度有關(guān)?
(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);
(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)參加科普知識競賽,需回答3個問題,競賽規(guī)則規(guī)定:答對第一、二、三問題分別得100分、100分、200分,答錯得零分,假設(shè)這名同學(xué)答對第一、二、三個問題的概率分別為0.8、0.7、0.6,且各題答對與否相互之間沒有影響.
(1)求這名同學(xué)得300分的概率;
(2)求這名同學(xué)至少得300分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級,為優(yōu);為輕度污染;為中度污染;為重度污染;為嚴重污染.一環(huán)保人士記錄去年某地某月10天的的莖葉圖如右.
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算)
(2)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于空間直角坐標(biāo)系中的一點,有下列說法:
①點到坐標(biāo)原點的距離為;
②的中點坐標(biāo)為;
③點關(guān)于軸對稱的點的坐標(biāo)為;
④點關(guān)于坐標(biāo)原點對稱的點的坐標(biāo)為;
⑤點關(guān)于坐標(biāo)平面對稱的點的坐標(biāo)為.
其中正確的個數(shù)是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究性學(xué)習(xí)中,關(guān)于三角形與三角函數(shù)知識的應(yīng)用(約定三內(nèi)角所對的邊分別是)得出如下一些結(jié)論:
(1)若是鈍角三角形,則;
(2)若是銳角三角形,則;
(3)在三角形中,若,則
(4)在中,若,則
其中錯誤命題的個數(shù)是 ( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程和函數(shù)的極值;
(Ⅱ)若對任意的, ,都有成立,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com