已知正三角形內(nèi)切圓的半徑r與它的高h的關(guān)系是:r=
1
3
h,把這個結(jié)論推廣到空間正四面體,則正四面體內(nèi)切球的半徑r與正四面體高h的關(guān)系是
 
考點:類比推理
專題:空間位置關(guān)系與距離
分析:連接球心與正四面體的四個頂點.把正四面體分成四個高為r的三棱錐,正四面體的體積,就是四個三棱錐的體積的和,求解即可.
解答: 解:球心到正四面體一個面的距離即球的半徑r,連接球心與正四面體的四個頂點.
把正四面體分成四個高為r的三棱錐,所以4×
1
3
S×r=
1
3
×S×h,
所以r=
1
4
h
(其中S為正四面體一個面的面積,h為正四面體的高)
故答案為:r=
1
4
h
點評:本題考查類比推理,解題的關(guān)鍵是明確類比的方法,明確正三角形面積、正四面體體積的計算方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+x+1,x≤0
-x2+x+1,x>0
,解不等式f(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過兩點A(1,0),B(2,1),且圓心在直線x-y=0上的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求出下列各式的值
(1)(-2013)0+8-0.25×
4
1
2
+(
32
×
3
)6-(2-
3
2
)
4
3

(2)已知a+a-1=7,求值①a2+a-2; ②a-
1
2
+a
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有A,B兩個投資項目,投資兩項目所獲得利潤分別是P和Q(萬元),它們與投入資金x(萬元)的關(guān)系依次是:其中P與x平方根成正比,且當x為4(萬元)時P為1(萬元),又Q與x成正比,當x為4(萬元)時Q也是1(萬元);某人甲有3萬元資金投資.
(Ⅰ)分別求出P,Q與x的函數(shù)關(guān)系式;
(Ⅱ)請幫甲設(shè)計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線kx-y-2=0與曲線
1-(y-1)2
=|x|-1
有兩個不同的交點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-sinx,0≤x≤
π
2
3x+
1
2
,x<0
,若f(x0)=-
1
2
,則x0=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為積極配合省運會志愿者招募工作,自貢一中擬成立由3名同學組成的志愿者招募宣傳隊,經(jīng)過初步選定,2名男同學,3名女同學共5名同學成為候選人,每位候選人當選宣傳隊隊員的機會是相同的.
(1)求當選的3名同學中恰有1名男同學的概率;
(2)求當選的3名同學中至少有2名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A、y=-
x+1
B、y=ln(x+2)
C、y=2-x
D、y=x+
1
x

查看答案和解析>>

同步練習冊答案