【題目】已知函數(shù)的單調(diào)遞減區(qū)間是.

(1)求的解析式;

(2)若對(duì)任意的,存在,使不等式成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】

1)由題意可知f′(x)<0的解集為(12),即f′(x)=0的兩根為1,2,建立 的方程組,解之即可求出函數(shù)fx)的解析式;(2)對(duì)任意不等式 上有解,等價(jià)于fminx對(duì)任意恒成立,再分離參數(shù)轉(zhuǎn)化求函數(shù)最值問題即可.

(1).

的單調(diào)遞減區(qū)間是(1,2),

解得,

.

(2)由(1)得,

當(dāng)時(shí),,

上單調(diào)遞增,

.

要使若對(duì)任意的,存在,使不等式成立,

只需對(duì)任意的,不等式成立.

所以需對(duì)任意的恒成立,

只需上恒成立.

設(shè),,則

當(dāng)時(shí),在(0,1)上單調(diào)遞減,在上單調(diào)遞增,

.

要使上恒成立,只需,則.

故t的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)測(cè)驗(yàn)共有10道選擇題,每道題共有四個(gè)選項(xiàng),且其中只有一個(gè)選項(xiàng)是正確的,評(píng)分標(biāo)準(zhǔn)規(guī)定:每選對(duì)1道題得5,不選或選錯(cuò)得0,某考試每道都選并能確定其中有6道題能選對(duì),其余4道題無法確定正確選項(xiàng),但這4道題中有2道能排除兩個(gè)錯(cuò)誤選項(xiàng),2題只能排除一個(gè)錯(cuò)誤選項(xiàng),于是該生做這4道題時(shí)每道題都從不能排除的選項(xiàng)中隨機(jī)挑選一個(gè)選項(xiàng)做答且各題做答互不影響

()求該考生本次測(cè)驗(yàn)選擇題得50分的概率;

()求該考生本次測(cè)驗(yàn)選擇題所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,點(diǎn)在線段PC上,且三棱錐的體積是四棱錐的體積的,,平面.

1)若的中點(diǎn),證明:直線∥平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;

(2)若上恒成立,求的取值范圍;

(3)證明:為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M,N分別為線段A1B,B1C的中點(diǎn).

(1)求證:MN∥平面AA1C1C;

(2)若∠ABC=90°,AB=BC=2,AA1=3,求點(diǎn)B1到面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)滿足:

;②在區(qū)間內(nèi)有最大值無最小值;

③在區(qū)間內(nèi)有最小值無最大值;④經(jīng)過

1)求的解析式;

2)若,求;

3)不等式的解集不為空集,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng)該地一建設(shè)銀行統(tǒng)計(jì)連續(xù)五年的儲(chǔ)蓄存款(年底余額)得到下表:

年份x

2014

2015

2016

2017

2018

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

為便于計(jì)算,工作人員將上表的數(shù)據(jù)進(jìn)行了處理(令),得到下表:

時(shí)間t

1

2

3

4

5

儲(chǔ)蓄存款z

0

1

2

3

5

1)求z關(guān)于t的線性回歸方程;

2)通過(1)中的方程,求出y關(guān)于x的回歸方程;

3)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

附:線性回歸方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求函數(shù)的單調(diào)減區(qū)間;

(2)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】班級(jí)新年晚會(huì)設(shè)置抽獎(jiǎng)環(huán)節(jié).不透明紙箱中有大小相同的紅球3個(gè),黃球2個(gè),且這5個(gè)球外別標(biāo)有數(shù)字1、23、45.有如下兩種方案可供選擇:

方案一:一次性抽取兩球,若顏色相同,則獲得獎(jiǎng)品;

方案二:依次有放回地抽取兩球,若數(shù)字之和大于5,則獲得獎(jiǎng)品.

1)寫出按方案一抽獎(jiǎng)的試驗(yàn)的所有基本事件;

2)哪種方案獲得獎(jiǎng)品的可能性更大?

查看答案和解析>>

同步練習(xí)冊(cè)答案