【題目】某程序框圖如圖所示,若輸出i的值為63,則判斷框內(nèi)可填入的條件是( )
A.S>27
B.S≤27
C.S≥26
D.S<26
【答案】A
【解析】解:模擬執(zhí)行程序框圖,可得
S=0,i=1
由題意,此時不滿足條件,執(zhí)行循環(huán)體,S=1,i=3
由題意,此時不滿足條件,執(zhí)行循環(huán)體,S=2,i=7
由題意,此時不滿足條件,執(zhí)行循環(huán)體,S=5,i=15
由題意,此時不滿足條件,執(zhí)行循環(huán)體,S=26,i=31
由題意,此時不滿足條件,執(zhí)行循環(huán)體,S=677,i=63
由題意,此時應(yīng)該滿足條件,退出循環(huán),輸出i的值為63.
則判斷框內(nèi)可填入的條件是S>27.
故選:A.
【考點精析】利用程序框圖對題目進行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國許多省市霧霾天氣頻發(fā),為增強市民的環(huán)境保護意識,某市面向全市征召n名義務(wù)宣傳志愿者,成立環(huán)境保護宣傳組織現(xiàn)把該組織的成員按年齡分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,已知第2組有70人.
(1)求該組織的人數(shù).
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加某社區(qū)的宣傳活動,然后在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第3組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點中學(xué)將全部高一學(xué)生分成兩個成績相當(dāng)(成績的均值、方差都相同)的級部, 級部采用傳統(tǒng)形式的教學(xué)方式, 級部采用新型的基于信息化的自主學(xué)習(xí)教學(xué)方式.為了解教學(xué)效果,期末考試后分別從兩個級部中各隨機抽取30名學(xué)生的數(shù)學(xué)成績進行統(tǒng)計,做出莖葉圖如下,記成績不低于127分者為“優(yōu)秀”.
(1)在級部樣本的30個個體中隨機抽取1個,求抽出的為“優(yōu)秀”的概率;
(2)由以上數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān).
附表:
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市有一條東西走向的公路,現(xiàn)欲經(jīng)過公路上的處鋪設(shè)一條南北走向的公路.在施工過程中發(fā)現(xiàn)在處的正北1百米的處有一漢代古跡.為了保護古跡,該市決定以為圓心, 1百米為半徑設(shè)立一個圓形保護區(qū).為了連通公路,欲再新建一條公路,點 分別在公路上,且求與圓相切.
(1)當(dāng)距處2百米時,求的長;
(2)當(dāng)公路長最短時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是實數(shù),函數(shù) .
(1)求證:函數(shù)不是奇函數(shù);
(2)當(dāng)時,解關(guān)于的不等式;
(3)求函數(shù)的值域(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動點P為橢圓 (a>b>0)上異于橢圓頂點A(a,0)、B(﹣a,0)的一點,F(xiàn)1 , F2為橢圓的兩個焦點,動圓M與線段F1P、F1F2的延長線級線段PF2相切,則圓心M的軌跡為除去坐標(biāo)軸上的點的( )
A.拋物線
B.橢圓
C.雙曲線的右支
D.一條直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是正方體的平面展開圖,在這個正方體中
(1)BM與ED平行 (2)CN與BE是異面直線
(3)CN與BM成60° (4)DM與BN垂直
以上四個命題中,正確命題的序號是( )
A. (1)(2)(3) B. (2)(4) C. (3)(4) D. (2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點在橢圓上,橢圓的四個頂點的連線構(gòu)成的四邊形的面積為.
(1)求橢圓的方程;
(2)設(shè)點為橢圓長軸的左端點, 為橢圓上異于橢圓長軸端點的兩點,記直線斜率分別為、,若,請判斷直線是否過定點?若過定點,求該定點坐標(biāo),若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知圓O1與圓O2相交于A,B兩點,過點A作圓O1的切線交圓O2于點C,過點B作兩圓的割線,分別交圓O1 , 圓O2于點D,E,DE與AC相交于點P.
(1)求證:AD∥EC;
(2)若AD是圓O2的切線,且PA=3,PC=1,AD=6,求DB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com