【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

【答案】(1) ; ; 為參數(shù);(2).

【解析】

(1)利用極角的定義、直線的傾斜角的定義以及兩直線過原點(diǎn),可得到直線與直線的直角坐標(biāo)方程;曲線的極坐標(biāo)方程兩邊同乘以利用 即可得其直角坐標(biāo)方程,然后化為參數(shù)方程即可;(2)聯(lián)立,得,同理,利用三角形面積公式可得結(jié)果.

(1)依題意,直線直角的坐標(biāo)方程為,

直線直角的坐標(biāo)方程為,

,

,

,

曲線的參數(shù)方程為為參數(shù)).

(2)聯(lián)立,

同理,

的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求不等式的解集;

(2)若不等式對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱臺(tái)中,平面ABCD,四邊形ABCD為平行四邊形,,,,EDC中點(diǎn).

1)求證:平面

2)求證:;

3)求三棱錐的高.

(注:棱臺(tái)的兩底面相似)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)有獎(jiǎng)銷售中,購滿100元商品得1張獎(jiǎng)券,多購多得,100張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,每個(gè)開獎(jiǎng)單位設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè),設(shè)一張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A,BC,可知其概率平分別為

1)求1張獎(jiǎng)券中獎(jiǎng)的概率;

2)求1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等級(jí)

A

B

C

D

規(guī)定:AB,C三級(jí)為合格等級(jí),D為不合格等級(jí)為了解該校高三年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì).

按照,,,的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示

n和頻率分布直方圖中的xy的值,并估計(jì)該校高一年級(jí)學(xué)生成績(jī)是合格等級(jí)的概率;

根據(jù)頻率分布直方圖,求成績(jī)的中位數(shù)精確到;

在選取的樣本中,從A,D兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,其關(guān)系如圖1;投資股票等風(fēng)險(xiǎn)型產(chǎn)品的年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖2.

1)分別寫出兩種產(chǎn)品的年收益的函數(shù)關(guān)系式;

2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費(fèi)用(單位:萬元)與隔熱層厚度(單位:厘米)滿足關(guān)系:.若不建隔熱層,每年的能源消耗費(fèi)用為萬元.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

1)求的值及的表達(dá)式;

2)隔熱層修建多厚時(shí),總費(fèi)用最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y2=4x的焦點(diǎn)為F,拋物線上有三個(gè)動(dòng)點(diǎn)A,B,C.

1)若,求;

2)若,AB的垂直平分線經(jīng)過一個(gè)定點(diǎn)Q,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為

1

2

3

4

5

0.2

0.3

0.3

0.1

0.1

商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;分2期或3期付款,其利潤(rùn)為300元;分4期或5期付款,其利潤(rùn)為400元,表示經(jīng)銷一件該商品的利潤(rùn).

1)求事件:“購買該商品的3位顧客中,至少有1位采用期付款”的概率

2)求的分布列、期望和方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案