【題目】在平面直角坐標(biāo)系中,原點為,拋物線的方程為,線段是拋物線的一條動弦.

1)求拋物線的準(zhǔn)線方程和焦點坐標(biāo);

2)當(dāng)時,設(shè)圓,若存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍.

【答案】1;(2.

【解析】

1)利用拋物線的方程為,可求拋物線的準(zhǔn)線方程和焦點坐標(biāo);

2設(shè)直線方程為,代入拋物線方程,寫出偉大定理,利用弦長公式求出,當(dāng)時,確定,的關(guān)系,利用函數(shù)的單調(diào)性,即可得出結(jié)論.

解:(1)拋物線的方程為,,

準(zhǔn)線方程:,焦點坐標(biāo):.

2設(shè)直線方程為,,

,

,

所以,

,即

,圓心為,半徑,

由于直線與圓相切,則,

,則,

當(dāng)時,單調(diào)遞減,,

當(dāng)時,單調(diào)遞增,,

因為存在兩條動弦,滿足直線與圓相切,

存在2個解,即存在一個解,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在P地正西方向16kmA處和正東方向2kmB處各一條正北方向的公路ACBD,現(xiàn)計劃在ACBD路邊各修建一個物流中心EF

1)若在P處看E,F的視角,在B處看E測得,求AE,BF

2)為緩解交通壓力,決定修建兩條互相垂直的公路PEPF,設(shè),公路PF的毎千米建設(shè)成本為a萬元,公路PE的毎千米建設(shè)成本為8a萬元.為節(jié)省建設(shè)成本,試確定E,F的位置,使公路的總建設(shè)成本最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求實數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.

1)求出動點的軌跡的標(biāo)準(zhǔn)方程;

2)設(shè)動直線與曲線有且僅有一個公共點,與圓相交于兩點(兩點均不在坐標(biāo)軸上),求直線的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=+.

(1)當(dāng)m=0,求不等式f(x)≤9的解集;

(2)當(dāng)m=2,x(1,4),f(x) 2xa<0,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小軍的微信朋友圈參與了微信運動,他隨機選取了40位微信好友(女20人,男20人),統(tǒng)計其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:

5860 8520 7326 6798 7325 8430 3216 7453 11754 9860

8753 6450 7290 4850 10223 9763 7988 9176 6421 5980

男性好友走路的步數(shù)情況可分為五個類別(說明:mn表示大于等于m,小于等于n):A02000步)1人,B20015000步)2人,C50018000步)3人,D800110000步)6人,E10001步及以上)8.若某人一天的走路步數(shù)超過8000步被系統(tǒng)認(rèn)定為健康型,否則被系統(tǒng)認(rèn)定為進(jìn)步型”.

1)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表,并根據(jù)此判斷能否有95%以上的把握認(rèn)為認(rèn)定類型性別有關(guān)?

健康型

進(jìn)步型

總計

20

20

總計

40

2)從小軍的40位好友中該天走路步數(shù)不超過5000的中隨機抽取3人,若表示抽到的三人分別是xy,z,試用該表示法列舉出試驗所有可能的結(jié)果.若記恰好抽到了一位女性好友為事件A,求事件A的概率.

附:,

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為ρ2cos θ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角)

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C有唯一的公共點,求角α的大。

查看答案和解析>>

同步練習(xí)冊答案