【題目】如圖,在P地正西方向16km的A處和正東方向2km的B處各一條正北方向的公路AC和BD,現(xiàn)計劃在AC和BD路邊各修建一個物流中心E和F.
(1)若在P處看E,F的視角,在B處看E測得,求AE,BF;
(2)為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設(shè),公路PF的毎千米建設(shè)成本為a萬元,公路PE的毎千米建設(shè)成本為8a萬元.為節(jié)省建設(shè)成本,試確定E,F的位置,使公路的總建設(shè)成本最。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,求直線l被圓C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,,,,點是邊的中點,將沿折起,使平面平面,連接,,,得到如圖2所示的幾何體.
(1)求證:平面;
(2)若,且與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與直線相切,是的導(dǎo)函數(shù),且.
(1)求;
(2)函數(shù)的圖象與曲線關(guān)于軸對稱,若直線與函數(shù)的圖象有兩個不同的交點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.
(I)求證:M為PB的中點;
(II)求二面角B-PD-A的大小;
(III)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)若函數(shù)有兩個極值點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.現(xiàn)以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)系方程和直線的普通方程;
(2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),其中,,為實常數(shù)
(1)若時,討論函數(shù)的單調(diào)性;
(2)若時,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若,當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,原點為,拋物線的方程為,線段是拋物線的一條動弦.
(1)求拋物線的準(zhǔn)線方程和焦點坐標(biāo);
(2)當(dāng)時,設(shè)圓:,若存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com