19.已知集合$P=\{x|y=\sqrt{2-x}\}$,Q={x|y=ln(x+1)},則P∩Q=( 。
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|-1<x≤2}D.{x|-1<x<2}

分析 先分別求出集體合P,Q,由此利用交集定義能求出P∩Q.

解答 解:∵集合$P=\{x|y=\sqrt{2-x}\}$={x|x≤2},
Q={x|y=ln(x+1)}={x|x>-1},
∴P∩Q={x|-1<x≤2}.
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若A=60°,b=8,S△ABC=12$\sqrt{3}$,則a=2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,若8a2+a5=0,則$\frac{{S}_{5}}{{S}_{2}}$等于( 。
A.$\frac{11}{3}$B.5C.-8D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y=4x2的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.2B.$\frac{1}{8}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,各棱長(zhǎng)均為2,D為AB的中點(diǎn).
(1)求證:BC1∥平面A1CD;
(2)求證:平面A1CD⊥平面ABB1A1
(3)求A1B1與平面A1CD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且滿足2an+1+Sn=2,則滿足$\frac{1001}{1000}<\frac{{{S_{2n}}}}{S_n}<\frac{11}{10}$的n的最大值是( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知A是射線x+y=0(x≤0)上的動(dòng)點(diǎn),B是x軸正半軸的動(dòng)點(diǎn),若直線AB與圓x2+y2=1相切,則|AB|的最小值是$2+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.從1,2,…,9這九個(gè)數(shù)中,隨機(jī)抽取3個(gè)不同的數(shù),則這3個(gè)數(shù)的和為奇數(shù)的概率是( 。
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{11}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓C:(x-3)2+(y-4)2=4.
(Ⅰ) 若直線l過點(diǎn)A(2,3)且被圓C截得的弦長(zhǎng)為2$\sqrt{3}$,求直線l的方程;
(Ⅱ) 若直線l過點(diǎn)B(1,0)與圓C相交于P,Q兩點(diǎn),求△CPQ的面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案