A. | 8 | B. | 9 | C. | 10 | D. | 11 |
分析 推導(dǎo)出${a_2}=\frac{1}{2}$,${a_{n+1}}=\frac{1}{2}{a_n}$,從而數(shù)列{an}是等比數(shù)列,進(jìn)而${S_n}=2-2•{(\frac{1}{2})^n}$,由此得到$\frac{1}{1000}<{(\frac{1}{2})^n}<\frac{1}{10}$,從而能求出n的最大值.
解答 解:∵數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且滿足2an+1+Sn=2,①
∴當(dāng)n=1時,2a1+S1=2,得${a_2}=\frac{1}{2}$.
當(dāng)n≥2時,有2an+Sn-1=2,②
①②兩式相減得${a_{n+1}}=\frac{1}{2}{a_n}$.
再考慮到${a_2}=\frac{1}{2}{a_1}$,所以數(shù)列{an}是等比數(shù)列,故有${S_n}=2-2•{(\frac{1}{2})^n}$.
因此原不等式足$\frac{1001}{1000}<\frac{{{S_{2n}}}}{S_n}<\frac{11}{10}$化為$\frac{1001}{1000}<\frac{{2-2•{{(\frac{1}{2})}^{2n}}}}{{2-2•{{(\frac{1}{2})}^n}}}<\frac{11}{10}$,化簡得$\frac{1}{1000}<{(\frac{1}{2})^n}<\frac{1}{10}$,
得n=4,5,6,7,8,9,所以n的最大值為9.
故選:B.
點(diǎn)評 本題考查數(shù)列不等式的項(xiàng)數(shù)n的最大值的求法,是中檔題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | 6$\sqrt{2}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (0,1) | C. | (1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤2} | B. | {x|-1≤x<2} | C. | {x|-1<x≤2} | D. | {x|-1<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | (2,3) | C. | (-1,3) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com