如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1).一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的焦點(diǎn)分別為A、B和C、D.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程

(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1

(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值,若不存在,請(qǐng)說(shuō)明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19.如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1F2x軸上,長(zhǎng)軸A1A2的長(zhǎng)為4,左準(zhǔn)線lx軸的交點(diǎn)為M,|MA1|∶|A1F1|=2∶1.

    (Ⅰ)求橢圓的方程;

    (Ⅱ)若點(diǎn)Pl上的動(dòng)點(diǎn),求∠F1PF2最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1,F2x軸上,長(zhǎng)軸A1A2的長(zhǎng)為4,左準(zhǔn)線lx軸的交點(diǎn)為M,|MA1|∶|A1F1|=2∶1.

   (Ⅰ)求橢圓的方程;

  

(Ⅱ)若直線l1xm(|m|>1),Pl1上的動(dòng)點(diǎn),使∠F1PF2最大的點(diǎn)P記為Q,求點(diǎn)Q的坐標(biāo)(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省濰坊市高二寒假作業(yè)(三)數(shù)學(xué)試卷 題型:解答題

如圖,已知橢圓(a>b>0)的離心率,過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為

 

 

(1)求橢圓的方程.

(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問(wèn):是否存在k的值,使以CD為直徑的圓過(guò)E點(diǎn)?請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案