“mn<0”是方程“mx2+ny2=1表示雙曲線”的( 。
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分又不必要條件
若“mn<0”,則m、n均不為0,方程mx2+ny2=1,可化為
x2
1
m
+
y2
1
n
=1,
若“mn<0”,
1
m
1
n
異號,方程
x2
1
m
+
y2
1
n
=1中,兩個(gè)分母異號,則其表示雙曲線,
故“mn<0”是方程“mx2+ny2=1表示雙曲線”的充分條件;
反之,若mx2+ny2=1表示雙曲線,則其方程可化為
x2
1
m
+
y2
1
n
=1,
此時(shí)有
1
m
、
1
n
異號,則必有mn<0,
故“mn<0”是方程“mx2+ny2=1表示雙曲線”的必要條件;
綜合可得:“mn<0”是方程“mx2+ny2=1表示雙曲線”的充要條件;
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的漸近線方程是3x±4y=0,則雙曲線的離心率等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線x2-
y2
a2
=1(a>0)的一條漸近線與直線x-2y+3=0垂直,則a是( 。
A.
1
4
B.2C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線
x2
a2
-y2=1過點(diǎn)P(2
2
,1),則雙曲線的焦點(diǎn)坐標(biāo)是( 。
A.(±
3
,0)
B.(±
5
,0)
C.(0,±
3
D.(0,±
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=k(x-1)與雙曲線x2-y2=4沒有公共點(diǎn),則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P是雙曲線
x2
4
-
y2
b2
=1
上一點(diǎn),雙曲線的一條漸近線為3x-2y=0,F(xiàn)1,F(xiàn)2分別是左、右焦點(diǎn),若|PF1|=5,則P到雙曲線右準(zhǔn)線的距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線
x=4cosθ
y=2
3
sinθ
上一點(diǎn)P到點(diǎn)A(-2,0),B(2,0)的距離之差為2.則△PAB為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是雙曲線16x2-9y2=144的焦點(diǎn),P為雙曲線上一點(diǎn),若|PF1||PF2|=32,則∠F1PF2=( 。
A.
π
6
B.
π
3
C.
π
2
D.
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),過F1且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABF2是鈍角三角形,則該雙曲線離心率的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊答案