某跳水運動員在一次跳水訓(xùn)練時的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時跳水曲線應(yīng)在離起跳點m()時達到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標系.

(1)當=1時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區(qū)域內(nèi)入水時才能達到壓水花的訓(xùn)練要求,求達到壓水花的訓(xùn)練要求時的取值范圍.

(1);(2).

解析試題分析:(1)由題意可以將拋物線的方程設(shè)為頂點式.由頂點(3,4),然后代入點可將拋物線方程求出;(2)將拋物線的方程設(shè)為頂點式,由點.將表示.跳水運動員在區(qū)域內(nèi)入水時才能達到壓水花的訓(xùn)練要求,所以方程在區(qū)間[5,6]內(nèi)有一解,根據(jù)拋物線開口向下,由函數(shù)的零點與方程的根的關(guān)系,令,由,且可得的取值范圍.
試題解析:(1)由題意知最高點為,,
設(shè)拋物線方程為,            4分
時,最高點為(3,4),方程為,
代入,得,
解得.
時,跳水曲線所在的拋物線方程.      8分
(2)將點代入
,所以.
由題意,方程在區(qū)間[5,6]內(nèi)有一解.     10分

,且.
解得.                          14分
達到壓水花的訓(xùn)練要求時的取值范圍.              16分
考點:1.拋物線的頂點式方程;2.函數(shù)的零點與方程的根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點為直線上的點,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中,直線l與拋物線相交于不同的兩點A,B.
(I)如果直線l過拋物線的焦點,求的值;
(II)如果,證明直線l必過一定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC的兩個頂點A,B的坐標分別是(-5,0),(5,0),且AC,BC所在直
線的斜率之積等于m(m≠0),求頂點C的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC中, 點A,B的坐標分別為A(-,0),B(,0)點C在x軸上方.
(Ⅰ)若點C坐標為(,1),求以A,B為焦點且經(jīng)過點C的橢圓的方程:
(Ⅱ)過點P(m,0)作傾斜角為的直線l交(1)中曲線于M,N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)點A(,0),B(,0),直線AM、BM相交于點M,且它們的斜率之積為.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線過點F(1,0)且繞F旋轉(zhuǎn),與圓相交于P、Q兩點,與軌跡C相交于R、S兩點,若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線焦點為,直線經(jīng)過點且與拋物線相交于,兩點

(Ⅰ)若線段的中點在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是拋物線上相異兩點,到y(tǒng)軸的距離的積為

(1)求該拋物線的標準方程.
(2)過Q的直線與拋物線的另一交點為R,與軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一條曲線軸右邊,上每一點到點的距離減去它到軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點M的直線與曲線C有兩個交點,且,求直線的斜率.

查看答案和解析>>

同步練習(xí)冊答案