已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設點為直線上的點,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.
(1) (2) (3)
解析試題分析: (1)利用點到直線的距離公式直接求解C的值,便可確定拋物線方程;(2)利用求導的思路確定拋物線的兩條切線,借助均過點P,得到直線方程;(3)通過直線與拋物線聯(lián)立,借助韋達定理將進行轉(zhuǎn)化處理,通過參數(shù)的消減得到函數(shù)關(guān)系式是解題的關(guān)鍵,然后利用二次函數(shù)求最值,需注意變量的范圍.
試題解析:(1)依題意,解得(負根舍去) (2分)
拋物線的方程為; (4分)
(2)設點,,由,即得.
∴拋物線在點處的切線的方程為,即. (5分)
因為在切線上且所以,
從而同理,, (6分)
不妨取,所以, (7分)
又,∴直線 的方程為 (8分)
(3)依據(jù)(2)由 得, (9分)
于是, (10分)
所以
又,所以, (11分)
從而 (12分)
考點:拋物線的方程、定義、切線方程以及直線與拋物線的位置關(guān)系.
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知圓為圓上一動點,點是線段的垂直平分線與直線的交點.
(1)求點的軌跡曲線的方程;
(2)設點是曲線上任意一點,寫出曲線在點處的切線的方程;(不要求證明)
(3)直線過切點與直線垂直,點關(guān)于直線的對稱點為,證明:直線恒過一定點,并求定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
矩形的中心在坐標原點,邊與軸平行,=8,=6.分別是矩形四條邊的中點,是線段的四等分點,是線段的四等分點.設直線與,與,與的交點依次為.
(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段的(等分點從左向右依次為,線段的等分點從上向下依次為,那么直線與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:+=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.
(Ⅰ).若,求拋物線的方程;
(Ⅱ).求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系上取兩個定點,再取兩個動點且.
(I)求直線與交點的軌跡的方程;
(II)已知,設直線:與(I)中的軌跡交于、兩點,直線、 的傾斜角分別為且,求證:直線過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:,過點作圓的切線交橢圓于A,B兩點。
(1)求橢圓的焦點坐標和離心率;
(2)求的取值范圍;
(3)將表示為的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某跳水運動員在一次跳水訓練時的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓練時跳水曲線應在離起跳點m()時達到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標系.
(1)當=1時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區(qū)域內(nèi)入水時才能達到壓水花的訓練要求,求達到壓水花的訓練要求時的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com