【題目】設f(x)是定義域為R,最小正周期為3π的函數(shù),且在區(qū)間(﹣π,2π]上的表達式為f(x)= ,則f(﹣ )+f( )=( )
A.
B.﹣
C.1
D.﹣1
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的參數(shù)方程為(θ是參數(shù)),直線l的極坐標方程為(ρ∈R)
(Ⅰ)求C的普通方程與極坐標方程;
(Ⅱ)設直線l與圓C相交于A,B兩點,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P ABCD中,底面ABCD為平行四邊形, ,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設AD=2, ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD,
(1)求異面直線BF與DE所成的角的大。
(2)證明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線l為拋物線C的切線,且l∥MN,P為l上一點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工科院校對, 兩個專業(yè)的男女生人數(shù)進行調查,得到如下的列聯(lián)表:
專業(yè) | 專業(yè) | 總計 | |
女生 | 12 | 4 | 16 |
男生 | 38 | 46 | 84 |
總計 | 50 | 50 | 100 |
(Ⅰ)從專業(yè)的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?
(Ⅱ)能否有95%的把握認為工科院校中“性別”與“專業(yè)”有關系?
附: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校研究性學習小組從汽車市場上隨機抽取20輛純電動汽車調查其續(xù)駛里程(單次充電后能行駛的最大里程),被調查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結果分成5組: ,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求續(xù)駛里程在的車輛數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程為的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2(a>0)在x=1處有極值10.
(1)求a、b的值;
(2)求f(x)的單調區(qū)間;
(3)求f(x)在[0,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線與拋物線相交于不同兩點、,與圓相切于點,且為線段中點.
(1) 若是正三角形(是坐標原點),求此三角形的邊長;
(2) 若,求直線的方程;
(3) 試對進行討論,請你寫出符合條件的直線的條數(shù)(直接寫出結論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com