【題目】設M={x|0≤x≤2},N={y|0≤y≤2},給出下列四個圖形:

其中,能表示從集合M到集合N的函數(shù)關系的個數(shù)是(
A.0
B.1
C.2
D.3

【答案】B
【解析】解:①中,因為在集合M中當1<x≤2時,在N中無元素與之對應,所以①不是;
②中,對于集合M中的任意一個數(shù)x,在N中都有唯一的數(shù)與之對應,所以②是;
③中,x=2對應元素y=3N,所以③不是;
④中,當x=1時,在N中有兩個元素與之對應,所以④不是.因此只有②滿足題意.
故選B.
【考點精析】本題主要考查了函數(shù)的概念及其構成要素的相關知識點,需要掌握函數(shù)三要素是定義域,對應法則和值域,而定義域和對應法則是起決定作用的要素,因為這二者確定后,值域也就相應得到確定,因此只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在海島上有一座海拔的山峰,山頂設有一個觀察站,有一艘輪船按一固定方向做勻速直線航行,上午時,測得此船在島北偏東、俯角為處,到時,又測得該船在島北偏西、俯角為的處.

1)求船的航行速度;

2)求船從行駛過程中與觀察站的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)對于任意實數(shù)x,不等式sin x+cos x>m恒成立,求實數(shù)m的取值范圍;

(2)存在實數(shù)x,不等式sin x+cos x>m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求適合下列條件的雙曲線的標準方程:

(1)以橢圓的長軸端點為焦點,且經(jīng)過點P(5, );

(2)過點P1(3,-4 ),P2(,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若要按從大到小給7,5,9,3,10五個數(shù)排序,試寫出算法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家為了鼓勵節(jié)約用水,實行階梯用水收費制度,價格參照表如表:

用水量(噸)

單價(元/噸)

0~20(含)

2.5

20~35(含)

3

超過20噸不超過35噸的部分按3元/噸收費

35以上

4

超過35噸的部分按4元/噸收費


(1)若小明家10月份用水量為30噸,則應繳多少水費?
(2)若小明家10月份繳水費99元,則小明家10月份用水多少噸?
(3)寫出水費y與用水量x之間的函數(shù)關系式,并畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.

(1)設每盤游戲獲得的分數(shù)為,求的分布列;

(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析分數(shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙兩個容器,甲容器容量為,滿純酒精,乙容器容量為,其中裝有體積為的水(:單位: ).現(xiàn)將甲容器中的液體倒人乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒人甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設操作過程中溶液體積變化忽略不計.設經(jīng)過次操作之后,乙容器中含有純酒精單位: ),下列關于數(shù)列的說法正確的是( )

A. 時,數(shù)列有最大值

B. ,則數(shù)列為遞減數(shù)列

C. 對任意的,始終有

D. 對任意的,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )與軸交于, 兩點, 為橢圓的左焦點,且是邊長為2的等邊三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于 兩點,點關于軸的對稱點為不重合),則直線軸交于點,求面積的取值范圍.

查看答案和解析>>

同步練習冊答案