【題目】已知橢圓 )與軸交于, 兩點(diǎn), 為橢圓的左焦點(diǎn),且是邊長(zhǎng)為2的等邊三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于, 兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為不重合),則直線軸交于點(diǎn),求面積的取值范圍.

【答案】(Ⅰ); (Ⅱ).

【解析】試題分析:

(Ⅰ)由是邊長(zhǎng)為2的等邊三角形,很容易得,從而得橢圓方程;

(Ⅱ)直線與橢圓相交問(wèn)題,設(shè)交點(diǎn)為,則有,把直線方程與橢圓方程聯(lián)立方程組,消元后可得,寫出直線方程,求出點(diǎn)坐標(biāo)為,又直線過(guò)定點(diǎn),因此,可用表示出來(lái),可設(shè)換元后求得其取值范圍.

試題解析:

(Ⅰ)依題意可得,且,

解得, .

所以橢圓的方程是.

(Ⅱ)由,得.

設(shè) ,則.

.

經(jīng)過(guò)點(diǎn), 的直線方程為.

,則 .

, ,

故當(dāng)時(shí),

.

所以

直線過(guò)定點(diǎn)

,則

上單調(diào)遞減

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)M={x|0≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形:

其中,能表示從集合M到集合N的函數(shù)關(guān)系的個(gè)數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一批材料可以建成100m長(zhǎng)的圍墻,現(xiàn)用這些材料在一邊靠墻的地方圍成一塊封閉的矩形場(chǎng)地,中間隔成3個(gè)面積相等的小矩形(如圖),則圍成的矩形場(chǎng)地的最大總面積為(圍墻厚度忽略不計(jì))m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí), 求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)橢圓的左頂點(diǎn)斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.

1)求橢圓的離心率;

2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)拋物線的頂點(diǎn)在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,并經(jīng)過(guò)點(diǎn),求此拋物線的方程.

(Ⅱ)已知圓: ),把圓上的各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍得一橢圓.求橢圓方程,并證明橢圓離心率是與無(wú)關(guān)的常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè), ,函數(shù), .

(Ⅰ)若有公共點(diǎn),且在點(diǎn)處切線相同,求該切線方程;

(Ⅱ)若函數(shù)有極值但無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng), 時(shí),求在區(qū)間的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) ,向量 =(cosα,sinα),
(1)證明:向量 垂直;
(2)當(dāng)| |=| |時(shí),求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(Ⅰ)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求, 的值;

(Ⅱ)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求的取值范圍;

(Ⅲ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案