【題目】用反證法證明命題“三角形內(nèi)角中至多有一個(gè)鈍角”,假設(shè)正確的是( )
A. 假設(shè)三個(gè)內(nèi)角都是銳角 B. 假設(shè)三個(gè)內(nèi)角都是鈍角
C. 假設(shè)三個(gè)內(nèi)角中至少有兩個(gè)鈍角 D. 假設(shè)三個(gè)內(nèi)角中至少有兩個(gè)銳角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各進(jìn)行一次射擊,假設(shè)兩人擊中目標(biāo)的概率分別是0.6和0.7,且射擊結(jié)果相互獨(dú)立,則甲、乙至多一人擊中目標(biāo)的概率為______ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為解決困難職工的住房問題,決定分批建設(shè)保障性住房供給困難職工,首批計(jì)劃用100萬元購(gòu)買一塊土地,該土地可以建造每層1000平方米的樓房一幢,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高20元,已知建筑第1層樓房時(shí),每平方米的建筑費(fèi)用為920元.為了使該幢樓房每平方米的平均費(fèi)用最低(費(fèi)用包括建筑費(fèi)用和購(gòu)地費(fèi)用),應(yīng)把樓房建成幾層?此時(shí)平均費(fèi)用為每平方米多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(a>0,且a≠1)
(1)判斷f(x)的奇偶性并證明;
(2)若對(duì)于x∈[2,4],恒有f(x)>loga成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水庫(kù)的儲(chǔ)水量隨時(shí)間而變化,現(xiàn)用表示事件,以月為單位,以年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫(kù)的儲(chǔ)水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為:
(1)該水庫(kù)的儲(chǔ)水量小于50的時(shí)期稱為枯水期,問:一年內(nèi)那幾個(gè)月份是枯水期?
(2)求一年內(nèi)該水庫(kù)的最大儲(chǔ)水量.
(取的值為4.6計(jì)算.的值為20計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記,若,均是定義在實(shí)數(shù)集R上的函數(shù),定義函數(shù)=,則下列命題正確的是( )
A.若,都是單調(diào)函數(shù),則也是單調(diào)函數(shù)
B.若,都是奇函數(shù),則也是奇函數(shù)
C.若,都是偶函數(shù),則也是偶函數(shù)
D.若是奇函數(shù),是偶函數(shù),則既不是奇函數(shù),也不是偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】側(cè)棱垂直于底面的棱柱叫做直棱柱.
側(cè)棱不垂直于底面的棱柱叫作斜棱柱.
底面是正多邊形的直棱柱叫作正棱柱.
底面是平行四邊形的四棱柱叫作平行六面體.
側(cè)棱與底面垂直的平行六面體叫作直平行六面體.
底面是矩形的直平行六面體叫作長(zhǎng)方體.
棱長(zhǎng)都相等的長(zhǎng)方體叫作正方體.
請(qǐng)根據(jù)上述定義,回答下面的問題(填“一定”、“不一定”“一定不”):
(1)直四棱柱________是長(zhǎng)方體;
(2)正四棱柱________是正方體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(-1,2,3)關(guān)于xOz平面對(duì)稱的點(diǎn)的坐標(biāo)是 ( )
A. (1,2,3) B. (-1,-2,3)
C. (-1,2,-3) D. (1,-2,-3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,點(diǎn)在橢圓上,、分別為橢圓的左右頂點(diǎn),過點(diǎn)作軸交的延長(zhǎng)線于點(diǎn),為橢圓的右焦點(diǎn).
(Ⅰ)求橢圓的方程及直線被橢圓截得的弦長(zhǎng);
(Ⅱ)求證:以為直徑的圓與直線相切.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com