【題目】某建筑公司打算在一處工地修建一座簡易儲物間.該儲物間室內(nèi)地面呈矩形形狀,面積為,并且一面緊靠工地現(xiàn)有圍墻,另三面用高度一定的矩形彩鋼板圍成,頂部用防雨布遮蓋,其平面圖如圖所示.已知該型號彩鋼板價(jià)格為100/米,整理地面及防雨布總費(fèi)用為500元,不受地形限制,不考慮彩鋼板的厚度,記與墻面平行的彩鋼板的長度為.

1)用表示修建儲物間的總造價(jià)(單位:元);

2)如何設(shè)計(jì)該儲物間,可使總造價(jià)最低?最低總造價(jià)為多少元?

【答案】12)與墻面平行的彩鋼板長度為10米,另兩邊長度為5米,可使儲物間總造價(jià)最低,最低總造價(jià)為2500

【解析】

1)首先求出彩鋼板的長度,根據(jù)總造價(jià)彩鋼長度整理地面及防雨布總費(fèi)用,即可求解.

2)利用基本不等式即可求解.

解:(1)由題意,建造儲物間所需彩鋼板總長度為米,

.

2,.

當(dāng)且僅當(dāng)時(shí)等號成立.

此時(shí),.

與墻面平行的彩鋼板長度為10米,另兩邊長度為5米,

可使儲物間總造價(jià)最低,最低總造價(jià)為2500.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心Mx軸上,半徑為,直線被圓M截得的弦長為,且圓心M在直線l的上方.

1)求圓的方程;

2)設(shè),若圓M的內(nèi)切圓,求AC,BC邊所在直線的斜率(用t表示);

3)在(2)的條件下求的面積S的最大值及對應(yīng)的t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時(shí),輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個互不相等的實(shí)數(shù)解時(shí),實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)R上的單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;

2)設(shè), 的導(dǎo)函數(shù).

①若對任意的,求證:存在使

②若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示,則函數(shù)圖象的一個對稱中心可能為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·金華調(diào)研)如圖,ABBEBC2AD2,且ABBE,DAB60°ADBC,BEAD.

(1)求證:平面ADE⊥平面BDE;

(2)求直線AD與平面DCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若, 都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點(diǎn)的概率;

(2)若, 都是從區(qū)間上任取的一個數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 ()的一個焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,圓上的動點(diǎn)T滿足:線段TQ的垂直平分線與線段TP相交于點(diǎn)K

求點(diǎn)K的軌跡C的方程;

經(jīng)過點(diǎn)的斜率之積為的兩條直線,分別與曲線C相交于MN兩點(diǎn),試判斷直線MN是否經(jīng)過定點(diǎn)若是,則求出定點(diǎn)坐標(biāo);若否,則說明理由.

查看答案和解析>>

同步練習(xí)冊答案