【題目】已知三個(gè)函數(shù)f(x)=2x+x,g(x)=x﹣1,h(x)=log3x+x的零點(diǎn)依次為a,b,c,則( )
A.a<b<c
B.b<a<c
C.c<a<b
D.a<c<b
【答案】D
【解析】解:令f(x)=2x+x=0,解得x<0,令g(x)=x﹣1=0,解得x=1, 由h(x)=log3x+x,令 =﹣1+ <0,h(1)=1>0,因此h(x)的零點(diǎn)x0∈ .
則b>c>a.
故選:D.
【考點(diǎn)精析】本題主要考查了指數(shù)函數(shù)的圖像與性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握a0=1, 即x=0時(shí),y=1,圖象都經(jīng)過(0,1)點(diǎn);ax=a,即x=1時(shí),y等于底數(shù)a;在0<a<1時(shí):x<0時(shí),ax>1,x>0時(shí),0<ax<1;在a>1時(shí):x<0時(shí),0<ax<1,x>0時(shí),ax>1;①加法:②減法:③數(shù)乘:④⑤才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A,B,C,D在同一個(gè)球的球面上,AB=BC=1,∠ABC=120°,若四面體ABCD體積的最大值為 ,則這個(gè)球的表面積為( )
A.
B.4π
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=3時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣3|,x∈R,f(x)+g(x)≥5,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
(1)若 ,求函數(shù) 處的切線方程
(2)設(shè)函數(shù) ,求 的單調(diào)區(qū)間.
(3)若存在 ,使得 成立,求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的短軸長為2 ,離心率e= ,
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若F1、F2分別是橢圓C的左、右焦點(diǎn),過F2的直線l與橢圓C交于不同的兩點(diǎn)A、B,求△F1AB的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求二面角D﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的奇函數(shù),且f(x﹣1)為偶函數(shù),當(dāng)x∈[0,1]時(shí), ,若函數(shù)g(x)=f(x)﹣x﹣b恰有一個(gè)零點(diǎn),則實(shí)數(shù)b的取值集合是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的極坐標(biāo)方程為ρcosθ﹣ρsinθ+2=0,曲線C2的參數(shù)方程為 (α為參數(shù)),將曲線C2上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)變?yōu)樵瓉淼? 倍,得到曲線C3 .
(1)寫出曲線C1的參數(shù)方程和曲線C3的普通方程;
(2)已知點(diǎn)P(0,2),曲線C1與曲線C3相交于A,B,求|PA|+|PB|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com