【題目】已知數(shù)列,其前項和為,滿足,其中,.

(1)若,求證:數(shù)列是等比數(shù)列;

(2)若數(shù)列是等比數(shù)列,求的值;

(3)若,且,求證:數(shù)列是等差數(shù)列.

【答案】(1)見解析(2)(3)見解析

【解析】試題分析:(1)根據(jù)題意得到,即,所以,故數(shù)列是等比數(shù)列;(2)是等比數(shù)列,設其公比為,根據(jù),,,可構造方程進而求得參數(shù)值;(3)先求得,得,兩式相減得:,化簡得到,再由迭代的方法得到數(shù)列進而證得數(shù)列是等差數(shù)列.

解析:

(1)證明:若,則當(),

所以

,

所以

又由,,

,,即,

所以,

故數(shù)列是等比數(shù)列.

(2)若是等比數(shù)列,設其公比為 ),

時,,即,得

          ,            ①

時,,即,得

          ,         ②

時,,即,得

         ,       、

,得

,得

解得

代入①式,得此時(),

所以是公比為1的等比數(shù)列,

(3)證明:若,由,得

  又,解得

,, ,,代入,

所以,成等差數(shù)列,

,得,

兩式相減得:

所以

相減得:

所以

所以

,

因為,所以,

即數(shù)列是等差數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了檢驗學習情況,某培訓機構于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設成績不低于90分者命名為“優(yōu)秀學員”.

(1)分別求甲、乙兩班學員成績的平均分(結果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,已知,. 

(Ⅰ),求數(shù)列的通項公式;

(Ⅱ),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品按行業(yè)生產(chǎn)標準分成8個等級,等級系數(shù)X依次為1,2,…8,其中為標準,為標準. 已知甲廠執(zhí)行標準生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件; 乙廠執(zhí)行標準生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為元/件,假定甲, 乙兩廠的產(chǎn)品都符合相應的執(zhí)行標準.

(Ⅰ)已知甲廠產(chǎn)品的等級系數(shù)的概率分布列如下所示:

5

6

7

8

0.4

b

0.1

的數(shù)學期望, 求a,b的值;

(Ⅱ)為分析乙廠產(chǎn)品的等級系數(shù),從該廠生產(chǎn)的產(chǎn)品中隨機抽取30件,相應的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:

用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)的數(shù)學期望;

(Ⅲ)在(Ⅰ),(Ⅱ)的條件下,若以“性價比”為判斷標準,則哪個工廠的產(chǎn)品更具可購買性?說明理由.

注: ①產(chǎn)品的“性價比”=;②“性價比”大的產(chǎn)品更具可購買性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線在平面直角坐標系下的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.

(1)求曲線的普通方程及極坐標方程;

(2)直線的極坐標方程是,射線 與曲線交于點與直線交于點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為100的調查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各50人;男性60人,女性40人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應比例,則下列敘述中錯誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關

B. 是否傾向選擇生育二胎與性別無關

C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇生育二的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若在定義域上是增函數(shù),的取值范圍;

(2)若存在使得,的值并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在點處的切線是.

(1)求函數(shù)的極值;

(2)當恒成立時,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,原點為,橢圓的動弦過焦點且不垂直于坐標軸,弦的中點為,過且垂直于線段的直線交直線于點

(1)證明:三點共線;

(2)求的最大值.

查看答案和解析>>

同步練習冊答案