【題目】在數(shù)列中,已知. 

(Ⅰ),求數(shù)列的通項公式;

(Ⅱ),求數(shù)列的前項和.

【答案】(Ⅰ). (Ⅱ).

【解析】試題分析:,可得,

,可得是以為公差的等差數(shù)列進而可得數(shù)列的通項公式;(結(jié)合可得,利用錯位相減法可求得數(shù)列的前項和.

試題解析:(Ⅰ),

,即是以為公差的等差數(shù)列.由題意知

.

(Ⅱ) (1)

(2)

(1)-(2)得:

.

方法點睛】本題主要考查等比數(shù)列的求和公式、等差數(shù)列的定義與通項公式以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出的表達式時應特別注意將兩式錯項對齊以便下一步準確寫出的表達式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將一副三角板拼接,使他們有公共邊BC,且使這兩個三角形所在的平面互相垂直,,,,BC=6.

(1)證明:平面ADC平面ADB;

(2)求二面角ACDB平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:

數(shù)據(jù)分組

頻數(shù)

3

8

9

12

10

5

3

(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;

(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)根據(jù)頻數(shù)分布對應的直方圖,可以認為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求.

附:(1)若隨機變量服從正態(tài)分布,則

,;

(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)(其中).

(1)當時,求不等式的解集;

(2)若關于的不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

Ⅰ)求的反函數(shù)的圖象上點(1,0)處的切線方程;

Ⅱ)證明:曲線與曲線有唯一公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓M:長軸上的兩個頂點為、,點P為橢圓M上除、外的一個動點,若,則動點Q在下列哪種曲線上運動( )

A. B. 橢圓 C. 雙曲線 D. 拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某水產(chǎn)品經(jīng)銷商銷售某種鮮魚,售價為每公斤元,成本為每公斤元.銷售宗旨是當天進貨當天銷售.如果當天賣不出去,未售出的全部降價處理完,平均每公斤損失元.根據(jù)以往的銷售情況,按,,,進行分組,得到如圖所示的頻率分布直方圖.

(1)求未來連續(xù)三天內(nèi),該經(jīng)銷商有連續(xù)兩天該種鮮魚的日銷售量不低于公斤,而另一天日銷售量低于公斤的概率;

(2)在頻率分布直方圖的需求量分組中,以各組區(qū)間的中點值代表該組的各個值.

(i)求日需求量的分布列;

(ii)該經(jīng)銷商計劃每日進貨公斤或公斤,以每日利潤的數(shù)學期望值為決策依據(jù),他應該選擇每日進貨公斤還是公斤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,其前項和為,滿足,其中.

(1)若,求證:數(shù)列是等比數(shù)列;

(2)若數(shù)列是等比數(shù)列,求的值;

(3)若,且,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交管部門為宣傳新交規(guī)舉辦交通知識問答活動,隨機對該市歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示:

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

(1)分別求出,,,的值;

(2)從第,,組回答正確的人中用分層抽樣方法抽取人,則第,組每組應各抽取多少人?

(3)在(2)的前提下,決定在所抽取的人中隨機抽取人頒發(fā)幸運獎,求:所抽取的人中至少有一個第組的人的概率.

查看答案和解析>>

同步練習冊答案