【題目】在數(shù)列中,已知,.
(Ⅰ)設,求數(shù)列的通項公式;
(Ⅱ)設,求數(shù)列的前項和.
【答案】(Ⅰ). (Ⅱ).
【解析】試題分析:(Ⅰ)由,可得,
即,可得是以為公差的等差數(shù)列,進而可得數(shù)列的通項公式;(Ⅱ)結(jié)合(Ⅰ)可得,利用錯位相減法可求得數(shù)列的前項和.
試題解析:(Ⅰ),,
,即是以為公差的等差數(shù)列.由題意知,
.
(Ⅱ) (1)
(2)
(1)-(2)得:
.
【 方法點睛】本題主要考查等比數(shù)列的求和公式、等差數(shù)列的定義與通項公式以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將一副三角板拼接,使他們有公共邊BC,且使這兩個三角形所在的平面互相垂直,,,,BC=6.
(1)證明:平面ADC平面ADB;
(2)求二面角A—CD—B平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)頻數(shù)分布對應的直方圖,可以認為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求.
附:(1)若隨機變量服從正態(tài)分布,則
,;
(2).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓M:長軸上的兩個頂點為、,點P為橢圓M上除、外的一個動點,若且,則動點Q在下列哪種曲線上運動( )
A. 圓 B. 橢圓 C. 雙曲線 D. 拋物線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某水產(chǎn)品經(jīng)銷商銷售某種鮮魚,售價為每公斤元,成本為每公斤元.銷售宗旨是當天進貨當天銷售.如果當天賣不出去,未售出的全部降價處理完,平均每公斤損失元.根據(jù)以往的銷售情況,按,,,,進行分組,得到如圖所示的頻率分布直方圖.
(1)求未來連續(xù)三天內(nèi),該經(jīng)銷商有連續(xù)兩天該種鮮魚的日銷售量不低于公斤,而另一天日銷售量低于公斤的概率;
(2)在頻率分布直方圖的需求量分組中,以各組區(qū)間的中點值代表該組的各個值.
(i)求日需求量的分布列;
(ii)該經(jīng)銷商計劃每日進貨公斤或公斤,以每日利潤的數(shù)學期望值為決策依據(jù),他應該選擇每日進貨公斤還是公斤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,其前項和為,滿足,其中,.
(1)若,求證:數(shù)列是等比數(shù)列;
(2)若數(shù)列是等比數(shù)列,求的值;
(3)若,且,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交管部門為宣傳新交規(guī)舉辦交通知識問答活動,隨機對該市歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示:
分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 | |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 |
(1)分別求出,,,的值;
(2)從第,,組回答正確的人中用分層抽樣方法抽取人,則第,,組每組應各抽取多少人?
(3)在(2)的前提下,決定在所抽取的人中隨機抽取人頒發(fā)幸運獎,求:所抽取的人中至少有一個第組的人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com