設,函數,
(1)若是函數的極值點,求的值;
(2)在(1)的條件下,求函數在區(qū)間上的最值.
(3)是否存在實數,使得函數 在上為單調函數,若是,求出的取值范圍,若不是,請說明理由。
科目:高中數學 來源: 題型:解答題
設函數.
(1)若函數圖像上的點到直線距離的最小值為,求的值;
(2)關于的不等式的解集中的整數恰有3個,求實數的取值范圍;
(3)對于函數定義域上的任意實數,若存在常數,使得和都成立,則稱直線為函數的
“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com