【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點(diǎn)在曲線(xiàn)段上,點(diǎn)在線(xiàn)段上).已知, ,其中曲線(xiàn)段是以為頂點(diǎn), 為對(duì)稱(chēng)軸的拋物線(xiàn)的一部分.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線(xiàn)段與線(xiàn)段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
【答案】(1)直角坐標(biāo)系見(jiàn)解析; 曲線(xiàn)段的方程為: ;
線(xiàn)段的方程為: .
(2) .
【解析】試題分析:(1)以AB為x軸,DA為y軸建立平面直角坐標(biāo)系,則A(0,0),B(6,0),C(6,-12),D(0,-6).設(shè)曲線(xiàn)AC的方程x2=-2py,(p>0,0≤x≤6).代入C坐標(biāo)即可求得p,即可求出曲線(xiàn)段的方程,由DC兩點(diǎn)坐標(biāo)即可求出線(xiàn)段的方程;
(2)設(shè)出F點(diǎn)橫坐標(biāo)a,將廠家廣告區(qū)域的面積表示為a的函數(shù),求出函數(shù)的最大值即可.
試題解析:(1)以直線(xiàn)為軸,直線(xiàn)為軸建立平面直角坐標(biāo)系(如圖所示).
則, , , ,
曲線(xiàn)段的方程為: ;
線(xiàn)段的方程為: ;
(2)設(shè)點(diǎn),則需,即,
則, , .
∴, , ,
則廠家廣告區(qū)域的面積
,
∴,
令,得, .
∴在上是增函數(shù),在上是減函數(shù).
∴.
∴廠家廣告區(qū)域的面積最大值是.
點(diǎn)睛:本題利用已知函數(shù)模型解決實(shí)際問(wèn)題,關(guān)鍵是合理建系設(shè)出點(diǎn)坐標(biāo)即可表示出面積的表達(dá)式,利用導(dǎo)數(shù)研究單調(diào)性即可求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大家知道,莫言是中國(guó)首位獲得諾貝爾獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了解程度,結(jié)果如下:
閱讀過(guò)莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)試估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率;
(Ⅱ)對(duì)莫言作品閱讀超過(guò)75篇的則稱(chēng)為“對(duì)莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān)?
非常了解 | 一般了解 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)六個(gè)從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?
(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?
(3)某次聯(lián)歡會(huì)要安排3個(gè)歌舞類(lèi)節(jié)目、2個(gè)小品類(lèi)節(jié)目和1個(gè)相聲類(lèi)節(jié)目的演出順序,則同類(lèi)節(jié)目不相鄰的排法有幾種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-sin2x+mcosx-1,x∈[].
(1)若f(x)的最小值為-4,求m的值;
(2)當(dāng)m=2時(shí),若對(duì)任意x1,x2∈[-]都有|f(x1)-f(x2)|恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)與拋物線(xiàn)相交于不同的兩點(diǎn).
(1)如果直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),求的值;
(2)如果 ,證明:直線(xiàn)必過(guò)一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,,為其左、右頂點(diǎn),為橢圓上除,外任意一點(diǎn),若記直線(xiàn),斜率分別為,.
(1)求證:為定值;
(2)若橢圓的長(zhǎng)軸長(zhǎng)為4,過(guò)點(diǎn)作兩條互相垂直的直線(xiàn),,若恰好為與橢圓相交的弦的中點(diǎn),求與橢圓相交的弦的中點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有兩個(gè)不等實(shí)數(shù)根,,且,則的最小值是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com