【題目】已知橢圓:的離心率為,,為其左、右頂點(diǎn),為橢圓上除,外任意一點(diǎn),若記直線,斜率分別為,.
(1)求證:為定值;
(2)若橢圓的長軸長為4,過點(diǎn)作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點(diǎn),求與橢圓相交的弦的中點(diǎn)的橫坐標(biāo).
【答案】(1)證明見解析.
(2).
【解析】分析:(1)由題意,,設(shè),表示出,.,.然后又P在橢圓上可得,故 即可;(2)先得出橢圓方程:. 設(shè)與橢圓交點(diǎn)為,,與橢圓交點(diǎn)為,,代入橢圓方程作差可得,結(jié)合中點(diǎn)可得.故可得方程,聯(lián)立橢圓即可.
詳解:
(1)由題意,,設(shè),
則,.
又在橢圓上,∴,;
∴
,
∵,∴為定值.
(2)∵,∴,,.
∴橢圓方程為.
設(shè)與橢圓交點(diǎn)為,,與橢圓交點(diǎn)為,,
則
②-①得:,
又,,∴.
∴,即.
∵,∴.
方程:,即.
由消去得.
∴,∴.
即與橢圓相交的弦的中點(diǎn)橫坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)f(x)=2a2x-1-1的圖象過定點(diǎn)(,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x(x+1),若f(a)=-2則實(shí)數(shù)a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關(guān)于直線x=2對稱;
⑤對于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f()≥
其中所有正確命題的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,當(dāng)時(shí),,設(shè)函數(shù),則與的圖象所有交點(diǎn)的橫坐標(biāo)之和為( ).
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點(diǎn)在曲線段上,點(diǎn)在線段上).已知, ,其中曲線段是以為頂點(diǎn), 為對稱軸的拋物線的一部分.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段與線段的方程;
(2)求該廠家廣告區(qū)域的最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用a代表紅球,b代表藍(lán)球,c代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個(gè)球都不取、“a”表示取出一個(gè)紅球,而“ab”則表示把紅球和藍(lán)球都取出來.以此類推,下列各式中,其展開式可用來表示從5個(gè)無區(qū)別的紅球、5個(gè)無區(qū)別的藍(lán)球、5個(gè)有區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( 。
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,E,F(xiàn)分別是PB,PD的中點(diǎn).
(I)求證:PB∥平面FAC;
(II)求三棱錐P-EAD的體積;
(III)求證:平面EAD⊥平面FAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè), ,已知和在處有相同的切線.
(1)求, 的解析式;
(2)求在上的最小值;
(3)若對, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M在一個(gè)U形水面PABQ(∠A=∠B=90°)上修一條堤壩(E在AP上,N在BQ上),圍出一個(gè)封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點(diǎn)M處分別向點(diǎn)E,N拉2條分隔線ME,MN,將所圍區(qū)域分成3個(gè)部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長度為l.
(1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達(dá)式,并寫出定義域;
(2)求l的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn)(為自然對數(shù)的底數(shù)).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com