【題目】給出下列五個命題:
①函數f(x)=2a2x-1-1的圖象過定點(,-1);
②已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=x(x+1),若f(a)=-2則實數a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關于直線x=2對稱;
⑤對于函數f(x)=lnx,其定義域內任意x1≠x2都滿足f()≥
其中所有正確命題的序號是______.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2x﹣)x,則下列結論中正確的是( 。
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】洛薩·科拉茨是德國數學家,他在1937年提出了一個著名的猜想:任給一個正整數,如果是偶數,就將它減半(即);如果是奇數,則將它乘3加1(即),不斷重復這樣的運算,經過有限步后,一定可以得到1,如初始正整數為6,按照上述變換規(guī)則,我們得到一個數列:6,3,10,5,16,8,4,2,1.對科拉茨猜想,目前誰也不能證明,更不能否定,如果對正整數按照上述規(guī)則實施變換(注:1可以多次出現)后的第九項為1,則的所有可能取值的集合為_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大家知道,莫言是中國首位獲得諾貝爾獎的文學家,國人歡欣鼓舞.某高校文學社從男女生中各抽取50名同學調查對莫言作品的了解程度,結果如下:
閱讀過莫言的 | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(Ⅰ)試估計該校學生閱讀莫言作品超過50篇的概率;
(Ⅱ)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據題意完成下表,并判斷能否有75%的把握認為對莫言作品的非常了解與性別有關?
非常了解 | 一般了解 | 合計 | |
男生 | |||
女生 | |||
合計 |
附:K2=
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|2x﹣1|,當a<b<c時,f(a)>f(c)>f(b),那么正確的結論是( 。
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)六個從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?
(2)把5件不同產品擺成一排,若產品與產品相鄰,且產品與產品不相鄰,則不同的擺法有幾種?
(3)某次聯歡會要安排3個歌舞類節(jié)目、2個小品類節(jié)目和1個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率為,,為其左、右頂點,為橢圓上除,外任意一點,若記直線,斜率分別為,.
(1)求證:為定值;
(2)若橢圓的長軸長為4,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,求與橢圓相交的弦的中點的橫坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com