【題目】洛薩·科拉茨是德國數(shù)學家,他在1937年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到1,如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個數(shù)列:6,3,10,5,16,8,4,2,1.對科拉茨猜想,目前誰也不能證明,更不能否定,如果對正整數(shù)按照上述規(guī)則實施變換(注:1可以多次出現(xiàn))后的第九項為1,則的所有可能取值的集合為_________.
【答案】.
【解析】分析:利用地9項為1出發(fā),按照規(guī)則,逆向逐項即可求出的所有可能的取值.
詳解:如果正整數(shù)按照上述規(guī)則進行變換后的第9項為1,
則變換中的第項為,
則變換中的第7項為,
則變換中的第6項為1,也可能是8,
則變換中的第5項為2也可能是16,
當變換中的第5項為2時,變換中的第4項是4,變換中的第3項是1或8,變換中的第2項為2或16,
當變換中的第5項為16時,變換中的第4項是32或5,變換中的第3項是64或10,變換中的第2項為20或3,
變換中第2項為2時,第1項為4,變換中第2項為16時,第1項為32或5,變換中第2項為3時,第1項為6,變換中第2項為20時,第1項為40,變換中第2項為21時,第1項為42,變換中第2項為128時,第1項為256,
所以的所有取值為.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}共有5項,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個數(shù)為( 。
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究“晚上喝綠茶與失眠”有無關系,調(diào)查了100名人士,得到下面的列聯(lián)表:
失眠 | 不失眠 | 合計 | |
晚上喝綠茶 | 16 | 40 | 56 |
晚上不喝綠茶 | 5 | 39 | 44 |
合計 | 21 | 79 | 100 |
由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
可以做出的結論是( )
A. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠有關”
B. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠無關”
C. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠有關”
D. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.
(I)求直線的普通方程與曲線的直角坐標方程;
(II)設直線與曲線相交于兩點,若點的直角坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)f(x)=2a2x-1-1的圖象過定點(,-1);
②已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x(x+1),若f(a)=-2則實數(shù)a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關于直線x=2對稱;
⑤對于函數(shù)f(x)=lnx,其定義域內(nèi)任意x1≠x2都滿足f()≥
其中所有正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,當時,,設函數(shù),則與的圖象所有交點的橫坐標之和為( ).
A. 3B. 4C. 5D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com