【題目】洛薩·科拉茨是德國數(shù)學家,他在1937年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到1,如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個數(shù)列:6,3,10,5,16,8,4,2,1.對科拉茨猜想,目前誰也不能證明,更不能否定,如果對正整數(shù)按照上述規(guī)則實施變換(注:1可以多次出現(xiàn))后的第九項為1,則的所有可能取值的集合為_________.

【答案】.

【解析】分析:利用地9項為1出發(fā),按照規(guī)則,逆向逐項即可求出的所有可能的取值.

詳解:如果正整數(shù)按照上述規(guī)則進行變換后的第9項為1,

則變換中的第項為,

則變換中的第7項為,

則變換中的第6項為1,也可能是8,

則變換中的第5項為2也可能是16,

當變換中的第5項為2時,變換中的第4項是4,變換中的第3項是18,變換中的第2項為216,

當變換中的第5項為16時,變換中的第4項是325,變換中的第3項是6410,變換中的第2項為203,

變換中第2項為2時,第1項為4,變換中第2項為16時,第1項為325,變換中第2項為3時,第1項為6,變換中第2項為20時,第1項為40,變換中第2項為21時,第1項為42,變換中第2項為128時,第1項為256,

所以的所有取值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}共有5項,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個數(shù)為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,,,是棱上一點.

1)求證:;

2)若分別為的中點,求證://平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,該程序運行后輸出的S的值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究“晚上喝綠茶與失眠”有無關系,調(diào)查了100名人士,得到下面的列聯(lián)表:

失眠

不失眠

合計

晚上喝綠茶

16

40

56

晚上不喝綠茶

5

39

44

合計

21

79

100

由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的結論是( )

A. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠有關”

B. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠無關”

C. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠有關”

D. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標方程為.

(I)求直線的普通方程與曲線的直角坐標方程;

(II)設直線與曲線相交于兩點,若點的直角坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過、兩點,且圓心在直線上.

(1)求圓C的方程;

(2)若直線經(jīng)過點且與圓C相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

①函數(shù)fx=2a2x-1-1的圖象過定點(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當x≥0時,fx=xx+1),若fa=-2則實數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對于任意xRfx=f4-x)成立,則fx)圖象關于直線x=2對稱;

⑤對于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的偶函數(shù)滿足,當時,,設函數(shù),則的圖象所有交點的橫坐標之和為( ).

A. 3B. 4C. 5D. 6

查看答案和解析>>

同步練習冊答案