【題目】已知圓C經(jīng)過(guò)兩點(diǎn),且圓心在直線上.

(1)求圓C的方程;

(2)若直線經(jīng)過(guò)點(diǎn)且與圓C相切,求直線的方程.

【答案】(1);(2)

【解析】

試題(1)根據(jù)圓心在弦的垂直平分線上,先求出弦的垂直平分線的方程與聯(lián)立可求得圓心坐標(biāo),再用兩點(diǎn)間的距離公式求得半徑,進(jìn)而求得圓的方程;(2)當(dāng)直線斜率不存在時(shí),與圓相切,方程為;當(dāng)直線斜率存在時(shí),設(shè)斜率為,寫(xiě)出其點(diǎn)斜式方程,利用圓心到直線的距離等于半徑建立方程求解出的值.

試題解析:(1)依題意知線段的中點(diǎn)坐標(biāo)是,直線的斜率為,

故線段的中垂線方程是,

解方程組,即圓心的坐標(biāo)為,

的半徑,故圓的方程是

(2)若直線斜率不存在,則直線方程是,與圓相離,不合題意;若直線斜率存在,可設(shè)直線方程是,即,因?yàn)橹本與圓相切,所以有,

解得

所以直線的方程是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校高一、高二兩個(gè)田徑隊(duì)中30名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試30人的跳高成績(jī)(單位:cm).跳高成績(jī)?cè)?75cm以上(包括175cm)定義為“合格”,成績(jī)?cè)?75cm以下定義為“不合格”.

(1)如果從所有運(yùn)動(dòng)員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問(wèn)就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運(yùn)動(dòng)員中選取2名,用X表示所選運(yùn)動(dòng)員來(lái)自高一隊(duì)的人數(shù),試寫(xiě)出X的分布圖,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來(lái)的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】洛薩·科拉茨是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1,如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)科拉茨猜想,目前誰(shuí)也不能證明,更不能否定,如果對(duì)正整數(shù)按照上述規(guī)則實(shí)施變換(注:1可以多次出現(xiàn))后的第九項(xiàng)為1,則的所有可能取值的集合為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).

(1)求證:AP∥平面MBD;

(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大家知道,莫言是中國(guó)首位獲得諾貝爾獎(jiǎng)的文學(xué)家,國(guó)人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了解程度,結(jié)果如下:

閱讀過(guò)莫言的
作品數(shù)(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10

(Ⅰ)試估計(jì)該校學(xué)生閱讀莫言作品超過(guò)50篇的概率;
(Ⅱ)對(duì)莫言作品閱讀超過(guò)75篇的則稱(chēng)為“對(duì)莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān)?

非常了解

一般了解

合計(jì)

男生

女生

合計(jì)

附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是奇函數(shù).

(1)求的值;

(2)證明:是區(qū)間上的減函數(shù);

(3)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知sinα+cosα=,,,

(1)求sin2α和tan2α的值;

(2)求cos(α+2β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案