【題目】α、β是兩個(gè)平面,m、n是兩條直線(xiàn),有下列四個(gè)命題:
①如果m⊥n , m⊥α , n∥β , 那么α⊥β.
②如果m⊥α , n∥α , 那么m⊥n.
③如果α∥β , m α , 那么m∥β.
④如果m∥n , α∥β , 那么m與α所成的角和n與β所成的角相等.
其中正確的命題有.(填寫(xiě)所有正確命題的編號(hào))
【答案】②③④
【解析】解:①如果m⊥n,m⊥α,n∥β,那么α∥β,故錯(cuò)誤;②如果n∥α,則存在直線(xiàn)lα,使n∥l,由m⊥α,可得m⊥l,那么m⊥n.故正確;③如果α∥β,mα,那么m與β無(wú)公共點(diǎn),則m∥β.故正確④如果m∥n,α∥β,那么m,n與α所成的角和m,n與β所成的角均相等.故正確;
【考點(diǎn)精析】通過(guò)靈活運(yùn)用命題的真假判斷與應(yīng)用和空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系;相交直線(xiàn):同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線(xiàn):同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線(xiàn): 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合Rn={X|X=(x1 , x2 , …,xn),xi∈{0,1},i=1,2,…,n}(n≥2).對(duì)于A=(a1 , a2 , …,an)∈Rn , B=(b1 , b2 , …,bn)∈Rn , 定義A與B之間的距離為d(A,B)=|a1﹣b1|+|a2﹣b2|+…|an﹣bn|= .
(Ⅰ)寫(xiě)出R2中的所有元素,并求兩元素間的距離的最大值;
(Ⅱ)若集合M滿(mǎn)足:MR3 , 且任意兩元素間的距離均為2,求集合M中元素個(gè)數(shù)的最大值并寫(xiě)出此時(shí)的集合M;
(Ⅲ)設(shè)集合PRn , P中有m(m≥2)個(gè)元素,記P中所有兩元素間的距離的平均值為 ,證明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:
作物產(chǎn)量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市場(chǎng)價(jià)格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知已知圓 經(jīng)過(guò) 、 兩點(diǎn),且圓心C在直線(xiàn) 上,求解:(1)圓C的方程;(2)若直線(xiàn) 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
(1)求圓C的方程;
(2)若直線(xiàn) 與圓 總有公共點(diǎn),求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)m∥平面α,則下列命題中正確的是( )
A.α內(nèi)所有直線(xiàn)都與直線(xiàn)m異面
B.α內(nèi)所有直線(xiàn)都與直線(xiàn)m平行
C.α內(nèi)有且只有一條直線(xiàn)與直線(xiàn)m平行
D.α內(nèi)有無(wú)數(shù)條直線(xiàn)與直線(xiàn)m垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求直線(xiàn)BD與平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為15的等比數(shù)列,其前n項(xiàng)的和為Sn , 若S3 , S5 , S4成等差數(shù)列,則公比q= , 當(dāng){an}的前n項(xiàng)的積達(dá)到最大時(shí)n的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.
(1)證明:BD⊥平面DEC;
(2)若二面角A﹣ED﹣B的大小為30°,求EC的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2, .
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點(diǎn),求二面角A﹣EC﹣B的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com