已知梯形中,,,,、分別是、上的點,,,的中點.沿將梯形翻折,使平面⊥平面 (如圖).


(I)當時,求證: ;
(II)若以、、為頂點的三棱錐的體積記為,求的最大值;
(III)當取得最大值時,求二面角的余弦值.

(1)略
(2)有最大值為
(3)所求二面角D-BF-C的平面角為鈍角,所以此二面角的余弦值為-

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的側(cè)面垂直于底面,,在棱上,的中點,二面角的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,正方體中, E是的中點.

(1)求證:∥平面AEC;
(2)求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點M,使得BM與面ABC所成的角為45°?若存在,求出點M的位置;若不存在,請說明理由。
(3)設棱臺DEF-ABC的體積為V=, 是否存在體積為V且各棱長均相等的平行六面體,使得它與棱臺DEF-ABC有相同的棱長和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請具體構(gòu)造出這樣的一個平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是邊長為1的正方形,
(1)求證:平面      
(2)求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,在平面四邊形中,是正三角形,,.  
(Ⅰ)將四邊形的面積表示成關(guān)于的函數(shù);
(Ⅱ)求的最大值及此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點,F(xiàn)是平面B1C1E
與直線AA1的交點。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱錐P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題6分)已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S。

查看答案和解析>>

同步練習冊答案