【題目】某地區(qū)實施光盤行動以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時,根據(jù)每桌剩余酒量,按一定倍率收費(如下表),每桌剩余酒量不足升的,按升計算(如剩余升,記為剩余).例如:結(jié)賬時,某桌剩余酒量恰好為升,則該桌的每位客人還應(yīng)付.統(tǒng)計表明飲酒量與人數(shù)有很強的線性相關(guān)關(guān)系,下面是隨機采集的組數(shù)據(jù)(其中表示飲酒人數(shù),()表示飲酒量):,,,,.

剩余酒量(單位:升)

升以上(含升)

結(jié)賬時的倍率

1)求由這組數(shù)據(jù)得到的關(guān)于的回歸直線方程;

2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時,酒吧服務(wù)生對小王說,根據(jù)他的經(jīng)驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請位或位朋友一起來飲酒,會更劃算.試向小王是否該接受服務(wù)生的建議?

參考數(shù)據(jù):回歸直線的方程是,其中,.

【答案】1;(2)接受

【解析】

1)計算出,,結(jié)合所給數(shù)據(jù),計算出,進而求得,即可求得答案;

2)小王和位朋友共人大約需要飲酒升,若不再邀請人,則剩余酒量升,酒吧記為剩余升,預(yù)計需要支付元,結(jié)合已知,即可求得答案.

1,,

,

,

回歸直線方程為.

2)小王和位朋友共人大約需要飲酒升,

若不再邀請人,則剩余酒量升,酒吧記為剩余升,

預(yù)計需要支付元;

若再邀請人,大約需飲酒升,剩余酒量升,

酒吧記為剩余升,預(yù)計支付元;

若再邀請人,大約需飲酒升,剩余酒量升,

酒吧記為剩余升,預(yù)計支付.

應(yīng)該接受建議,且再邀請位朋友更劃算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的焦點是,是曲線上不同兩點,且存在實數(shù)使得,曲線在點、處的兩條切線相交于點

1)求點的軌跡方程;

2)點軸上,以為直徑的圓與的另一交點恰好是的中點,當時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),若,且上恒成立,求的取值范圍;

3)設(shè)函數(shù),若,且上存在零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將三棱錐拼接得到如圖所示的多面體,其中,,,分別為,,的中點,.

1)當點在直線上時,證明:平面

2)若均為面積為的等邊三角形,求該多面體體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為4的等邊三角形,,的中點.

1)證明:平面.

2)若是等邊三角形,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,己知拋物線,直線交拋物線于兩點,是拋物線外一點,連接分別交地物線于點,且.

1)若,求點的軌跡方程.

2)若,且平行x軸,求面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校300名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘).

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

34

51

59

66

65

25

將學生日均體育鍛煉時間在的學生評價為鍛煉達標”.

1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達標

鍛煉達標

合計

40

160

合計

2)通過計算判斷,是否能在犯錯誤的概率不超過0.05的前提下認為鍛煉達標與性別有關(guān)?

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若不等式時恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)

1)當時,求函數(shù)在點處的切線方程;

2)定義在R上的函數(shù)滿足,當時,。若存在滿足不等式是函數(shù)的一個零點,求實數(shù)a的取值范圍。

查看答案和解析>>

同步練習冊答案