【題目】函數(shù)

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2)定義在R上的函數(shù)滿足,當(dāng)時(shí),。若存在滿足不等式是函數(shù)的一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍。

【答案】(1)(2)

【解析】

1)將代入,求其導(dǎo)函數(shù),得的值,進(jìn)而可得切線方程。

(2)構(gòu)造函數(shù),根據(jù)已知得到其是奇函數(shù),求導(dǎo)可得上的單調(diào)性,將轉(zhuǎn)化為關(guān)于的不等式,利用的單調(diào)性解該不等式,可求得的范圍,即的零點(diǎn)的范圍,轉(zhuǎn)化為的范圍上有零點(diǎn),利用導(dǎo)數(shù)知識(shí)和零點(diǎn)存在性定理,可求出a的取值范圍。

解:(1)當(dāng)時(shí),因?yàn)?/span>

所以,

所以,

,所以函數(shù)在點(diǎn)處的切線方程為

2)令,因?yàn)?/span>,

所以,

所以為奇函數(shù)。

當(dāng)時(shí),

所以上單調(diào)遞減,

所以R上單調(diào)遞減,

滿足不等式,即,

所以

化簡(jiǎn)得,所以,即

因?yàn)?/span>是函數(shù)的一個(gè)零點(diǎn),

所以時(shí)有一個(gè)零點(diǎn):

當(dāng)時(shí),,

所以上單調(diào)遞減,

,又因?yàn)?/span>,

所以要使時(shí)有一個(gè)零點(diǎn),只需,解得,

所以實(shí)數(shù)a的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)實(shí)施光盤行動(dòng)以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時(shí),根據(jù)每桌剩余酒量,按一定倍率收費(fèi)(如下表),每桌剩余酒量不足升的,按升計(jì)算(如剩余升,記為剩余).例如:結(jié)賬時(shí),某桌剩余酒量恰好為升,則該桌的每位客人還應(yīng)付.統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的組數(shù)據(jù)(其中表示飲酒人數(shù),()表示飲酒量):,,,,.

剩余酒量(單位:升)

升以上(含升)

結(jié)賬時(shí)的倍率

1)求由這組數(shù)據(jù)得到的關(guān)于的回歸直線方程;

2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說,根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)位或位朋友一起來飲酒,會(huì)更劃算.試向小王是否該接受服務(wù)生的建議?

參考數(shù)據(jù):回歸直線的方程是,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)若,對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級(jí)可分為四類:珍品、特級(jí)、優(yōu)級(jí)和一級(jí)(每箱有5kg,某采購(gòu)商打算訂購(gòu)一批橙子銷往省外,并從采購(gòu)的這批橙子中隨機(jī)抽取100箱,利用橙子的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:

等級(jí)

珍品

特級(jí)

優(yōu)級(jí)

一級(jí)

箱數(shù)

40

30

10

20

1)若將頻率改為概率,從這100箱橙子中有放回地隨機(jī)抽取4箱,求恰好抽到2箱是一級(jí)品的概率:

2)利用樣本估計(jì)總體,莊園老板提出兩種購(gòu)銷方案供采購(gòu)商參考:

方案一:不分等級(jí)賣出,價(jià)格為27/kg;

方案二:分等級(jí)賣出,分等級(jí)的橙子價(jià)格如下:

等級(jí)

珍品

特級(jí)

優(yōu)級(jí)

一級(jí)

售價(jià)(元/kg

36

30

24

18

從采購(gòu)商的角度考慮,應(yīng)該采用哪種方案?

3)用分層抽樣的方法從這100箱橙子中抽取10箱,再?gòu)某槿〉?/span>10箱中隨機(jī)抽取3箱,X表示抽取的是珍品等級(jí),求x的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,且.

1)證明:;

2)在上是否存在點(diǎn),使平面,若存在,請(qǐng)計(jì)算的值,若不存在,請(qǐng)說明理由;

3)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,且平面,,M,N分別為,的中點(diǎn).

1)記平面與底面的交線為l,試判斷直線l與平面的位置關(guān)系,并證明.

2)點(diǎn)Q在棱上,若Q到平面的距離為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高鐵站停車場(chǎng)針對(duì)小型機(jī)動(dòng)車收費(fèi)標(biāo)準(zhǔn)如下:2小時(shí)內(nèi)(含2小時(shí))每輛每次收費(fèi)5元;超過2小時(shí)不超過5小時(shí),每增加一小時(shí)收費(fèi)增加3元,不足一小時(shí)的按一小時(shí)計(jì)費(fèi);超過5小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)15元封頂。超過24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).為了調(diào)查該停車場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場(chǎng)僅停車一次),得到下面的頻數(shù)分布表:

T(小時(shí))

頻數(shù)(車次)

600

120

80

100

100

以車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的概率。

1X表示某輛車在該停車場(chǎng)停車一次所交費(fèi)用,求X的概率分布列及期望;

2)現(xiàn)隨機(jī)抽取該停車場(chǎng)內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用少于的車輛數(shù),求的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案