【題目】已知正方體的棱長(zhǎng)為,點(diǎn)分別棱樓的中點(diǎn),下列結(jié)論中正確的是(

A.四面體的體積等于B.平面

C.平面D.異面直線所成角的正切值為

【答案】BD

【解析】

根據(jù)直線與平面的位置關(guān)系可知不正確;根據(jù)線面垂直的判定定理可知正確;根據(jù)空間向量夾角的坐標(biāo)公式可知正確;用正方體體積減去四個(gè)正三棱錐的體積可知不正確.

解:延長(zhǎng)分別與,的延長(zhǎng)線交于,,連接,設(shè)的延長(zhǎng)線交于,連接,交,連,,,, 相交,故與平面相交,所以不正確;

,,且相交,所以平面,故正確;

為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,利用空間向量的夾角可得異面直線的夾角的正切值為,故正確;

四面體的體積等于正方體的體積減去四個(gè)正三棱錐的體積,即為,故不正確.

故選:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知時(shí),函數(shù)有極值

(1)求實(shí)數(shù)的值;

(2)若方程有3個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,BC的對(duì)邊分別為a,b,c,且滿足

(1)求A;

(2)若D為邊BC上一點(diǎn),且,b=6,AD=2,求a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),在圓E上,過點(diǎn)的直線l與圓E相切.

求圓E的方程;

求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟(jì)價(jià)值是種植乙水果經(jīng)濟(jì)價(jià)值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長(zhǎng)的需要,該光源照射范圍是,點(diǎn)在直徑上,且

1)若米,求的長(zhǎng);

2)設(shè), 求該空地產(chǎn)生最大經(jīng)濟(jì)價(jià)值時(shí)種植甲種水果的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)都在軸上方),且.

(1)求橢圓的方程;

(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;

(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率,點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)是橢圓上一點(diǎn),左頂點(diǎn)為,上頂點(diǎn)為,直線軸交于點(diǎn),直線軸交于點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線是過點(diǎn),傾斜角為的直線,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(Ⅰ)求曲線的普通方程和曲線的一個(gè)參數(shù)方程;

(Ⅱ)曲線與曲線相交于, 兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案