A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,根據(jù)向量的夾角公式公式計算即可.
解答 解:∵向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,且$α-β=\frac{2π}{3}$,設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ
∴$\overrightarrow a$•($\overrightarrow a+\overrightarrow b$)=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}•\overrightarrow$=1+cosθ,
|$\overrightarrow a+\overrightarrow b$|2=${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=2+2cosθ,
∴cos<$\overrightarrow a$,$\overrightarrow a+\overrightarrow b$>=$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}{\overrightarrow{|a|}•|\overrightarrow{a}+\overrightarrow|}$=$\frac{1+cosθ}{2+2cosθ}$=$\frac{1}{2}$,
∵夾角的范圍0~π,
∴$\overrightarrow a$與$\overrightarrow a+\overrightarrow b$的夾角$\frac{π}{3}$.
故選:A
點評 本題主要考查了向量的坐標(biāo)運算和數(shù)量積的運算,屬于基礎(chǔ)題
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=3-x | B. | f(x)=(x-1)2 | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=x2+2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平面ABCD | B. | 平面PBC | C. | 平面PAD | D. | 平面PBC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1+\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $2+\sqrt{2}$ | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com