【題目】已知函數(shù)f(x)=log2(x+m),且f(0)、f(2)、f(6)成等差數(shù)列.
(1)求f(30)的值.
(2)若a、b、c是兩兩不相等的正數(shù),且a、b、c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.
【答案】
(1)
【解答】解:由f(0)、f(2)、f(6)成等差數(shù)列,得
2log2(2+m)=log2m+log2(6+m),
即(m+2)2=m(m+6)(m>0).
∴m=2,
∴f(30)=log2(30+2)=5.
(2)
【解答】
證明:f(a)+f(c)>2f(b).
證明如下:
2f(b)=2log2(b+2)=log2(b+2)2,
f(a)+f(c)=log2[(a+2)(c+2)],
又b2=ac,
∴(a+2)(c+2)-(b+2)2=ac+2(a+c)+4-b2-4b-4=2(a+c)-4b.
∵ (a≠c),
∴2(a+c)-4b>0,
∴l(xiāng)og2[(a+2)(c+2)]>log2(b+2)2,
即f(a)+f(c)>2f(b).
【解析】本題主要考查了比較法證明不等式,解決問題的關(guān)鍵是(1)根據(jù)等差數(shù)列性質(zhì)求得m,然后計(jì)算即可;(2)首項(xiàng)求得2f(b)=2log2(b+2)=log2(b+2)2 , f(a)+f(c)=log2[(a+2)(c+2)],如何根據(jù)所給條件結(jié)合不等式性質(zhì)作差比較大小即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(x0 , y0)在x2+y2=r2(r>0)外,則直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系為( )
A.相交
B.相切
C.相離
D.相交、相切、相離三種情況均有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校田徑隊(duì)共有男運(yùn)動(dòng)員45人,女運(yùn)動(dòng)員36人.若采用分層抽樣的方法在全體運(yùn)動(dòng)員中抽取18人進(jìn)行體質(zhì)測試,則抽到的女運(yùn)動(dòng)員人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點(diǎn)D是AB的中點(diǎn).求證:
(1)AC⊥BC1;
(2)AC1∥平面B1CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:kx﹣y+1+2k=0(k∈R).
(1)證明:直線l過定點(diǎn);
(2)若直線l不經(jīng)過第四象限,求k的取值范圍;
(3)若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)△AOB的面積為S,求S的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)p(x,y)是直線kx+y+4=0(k>0)上一動(dòng)點(diǎn),PA、PB是圓C:x2+y2﹣2y=0的兩條切線,A、B是切點(diǎn),若四邊形PACB的最小面積是2,則k的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則不等式(x﹣1)f′(x)<0的解集為( )
A.(﹣∞, )∪(1,2)
B.(﹣1,1)∪(1,3)
C.(﹣1, )∪(3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個(gè)分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫出如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求a并估計(jì)這次考試中該學(xué)科的中位數(shù)、平均值;
(2)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成下列六段(從低分段到高分段依次為第一組、第二組…第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進(jìn)行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差不小于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù),如:[40,50),[70,80)這兩組分?jǐn)?shù)之差為30分),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|﹣1<x<2},B={x|2a﹣1<x<2a+3}.
(1)若AB,求a的取值范圍;
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com