19.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3i}{1-i}$對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)代數(shù)形式的乘法運算化簡復(fù)數(shù)$\frac{3i}{1-i}$,求出在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3i}{1-i}$對應(yīng)的點的坐標(biāo),則答案可求.

解答 解:$\frac{3i}{1-i}$=$\frac{3i(1+i)}{(1-i)(1+i)}=\frac{-3+3i}{2}=-\frac{3}{2}+\frac{3}{2}i$,
在復(fù)平面內(nèi),復(fù)數(shù)$\frac{3i}{1-i}$對應(yīng)的點的坐標(biāo)為:($-\frac{3}{2}$,$\frac{3}{2}$),位于第二象限.
故選:B.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a=({1,\sqrt{3}}),|{\overrightarrow b}|=1$,且$\overrightarrow a+λ\overrightarrow b=\overrightarrow 0$,則λ=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,O為坐標(biāo)原點,P是雙曲線在第一象限上的點且滿足|PF1|=2|PF2|,直線PF2交雙曲線C于另一點N,又點M滿足$\overrightarrow{MO}$=$\overrightarrow{OP}$且∠MF2N=120°,則雙曲線C的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知M是拋物線C:y2=2px(p>0)上一點,F(xiàn)是拋物線的焦點,∠MFx=60°且|FM|=4.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知點P在y軸正半軸,直線PF交拋物線C于A(x1,y1)、B(x2,y2)兩點,其中y1>0,y2<0,試問$\frac{|PA|}{|AF|}$-$\frac{|PB|}{|BF|}$是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x、y滿足約束條件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,且目標(biāo)函數(shù)z=ax+2y僅在點(1,0)處取得最小值,則a的取值范圍是(  )
A.(-1,2)B.(-4,2)C.(-4,0)D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.二項式${({{x^2}-\frac{1}{x}})^6}$的展開式中(  )
A.不含x9B.含x4C.含x2D.不含x項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴(yán)重污染.一環(huán)保人士當(dāng)?shù)啬衬甑腁QI記錄數(shù)據(jù)中,隨機抽取10個,用莖葉圖記錄如圖.根據(jù)該統(tǒng)計數(shù)據(jù),估計此地該年AQI大于100的天數(shù)約為為146.(該年為365天)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個由半圓錐和平放的直三棱柱(側(cè)棱垂直于底面的三棱柱)組成的幾何體,其三視圖如圖所示,則該幾何體的體積為(  )
A.1+$\frac{π}{3}$B.1+$\frac{π}{6}$C.$\frac{2}{3}$+$\frac{π}{3}$D.$\frac{2}{3}$+$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:已知角α終邊上的一點P(7m,-3m)(m≠0).
(Ⅰ)求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值;
(Ⅱ)求2+sinαcosα-cos2α的值.

查看答案和解析>>

同步練習(xí)冊答案