【題目】已知函數(shù)

1)若,證明:;

2)若只有一個極值點,求的取值范圍.

【答案】1)詳見解析;(2.

【解析】

1)將代入,可得等價于,即,令,求出,可得的最小值,可得證;

(2)分,三種情況討論,分別對求導(dǎo),其中又分①若三種情況,利用函數(shù)的零點存在定理可得a的取值范圍.

解:(1)當時,等價于,即;

設(shè)函數(shù),則

時,;當時,

所以上單調(diào)遞減,在單調(diào)遞增.

的最小值,

,故,即

(2),

設(shè)函數(shù) ,則;

(i)當時,,上單調(diào)遞增,

,取b滿足,則,

上有唯一一個零點,

且當時,,時,,

由于,所以的唯一極值點;

(ii)當時,上單調(diào)遞增,無極值點;

(iii)當時,若時,;若時,

所以上單調(diào)遞減,在單調(diào)遞增.

的最小值,

①若時,由于,故只有一個零點,所以,

因此上單調(diào)遞增,故不存在極值;

②若時,由于,即,所以,

因此上單調(diào)遞增,故不存在極值;

③若時,,即

,且,

而由(1)知,所以

c滿足,則

有唯一一個零點,在有唯一一個零點

且當,當時,,當時,

由于,故處取得極小值,在處取得極大值,

上有兩個極值點.

綜上,只有一個極值點時,的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(其中為實數(shù)).

1)若,求零點的個數(shù);

2)求證:若不是的極值點,則無極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位從一所學(xué)校招收某類特殊人才.對位已經(jīng)選拔入圍的學(xué)生進行運動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:

一般

良好

優(yōu)秀

一般

良好

優(yōu)秀

例如表中運動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是人.由于部分數(shù)據(jù)丟失,只知道從這參加測試的學(xué)生中隨機抽取一抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為

1的值;

2運動協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四邊形為矩形,點為平面外一點,且平面,若.

1)求與平面所成角的大;

2)在邊上是否存在一點,使得點到平面的距離為,若存在,求出的值,若不存在,請說明理由;

3)若點的中點,在內(nèi)確定一點,使的值最小,并求此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,國際權(quán)威機構(gòu)IDC發(fā)布的全球手機銷售報告顯示:華為突破2億臺出貨量超越蘋果的出貨量,首次成為全球第二,華為無愧于中國最強的高科技企業(yè)。華為業(yè)務(wù)CEO余承東明確表示,華為的目標,就是在2021年前,成為全球最大的手機廠商.為了解華為手機和蘋果手機使用的情況是否和消費者的性別有關(guān),對100名華為手機使用者和蘋果手機使用者進行統(tǒng)計,統(tǒng)計結(jié)果如下表:

根據(jù)表格判斷是否有95%的把握認為使用哪種品牌手機與性別有關(guān)系,則下列結(jié)論正確的是( )

附:

A. 沒有95%把握認為使用哪款手機與性別有關(guān)

B. 95%把握認為使用哪款手機與性別有關(guān)

C. 95%把握認為使用哪款手機與性別無關(guān)

D. 以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點在軸上,且短軸的兩個頂點與其中一個焦點的連線構(gòu)成斜邊為的等腰直角三角形.

(1)求橢圓的方程;

(2)動直線交橢圓兩點,試問:在坐標平面上是否存在一個定點,使得以線段為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)=[]

若曲線y= fx在點(1,處的切線與軸平行,a

x=2處取得極小值,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年數(shù)學(xué)競賽請自以為來自X星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會的題就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題;然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答的題目則跳過(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答題),這樣所有的題目均有作答,設(shè)這位選手可能的答題次序有n種,則n的值為(

A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是正方形,且四個側(cè)面均為等邊三角形.延長至點使,連接,.

1)證明:;

2)求二面角平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案