【題目】設(shè)函數(shù)=[].
(Ⅰ)若曲線(xiàn)y= f(x)在點(diǎn)(1,)處的切線(xiàn)與軸平行,求a;
(Ⅱ)若在x=2處取得極小值,求a的取值范圍.
【答案】(1) a的值為1
(2) a的取值范圍是(,+∞)
【解析】分析:(1)先求導(dǎo)數(shù),再根據(jù)得a;(2)先求導(dǎo)數(shù)的零點(diǎn):,2;再分類(lèi)討論,根據(jù)是否滿(mǎn)足在x=2處取得極小值,進(jìn)行取舍,最后可得a的取值范圍.
詳解:解:(Ⅰ)因?yàn)?/span>=[],
所以f ′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x∈R)
=[ax2–(2a+1)x+2]ex.
f ′(1)=(1–a)e.
由題設(shè)知f ′(1)=0,即(1–a)e=0,解得a=1.
此時(shí)f (1)=3e≠0.
所以a的值為1.
(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.
若a>,則當(dāng)x∈(,2)時(shí),f ′(x)<0;
當(dāng)x∈(2,+∞)時(shí),f ′(x)>0.
所以f (x)<0在x=2處取得極小值.
若a≤,則當(dāng)x∈(0,2)時(shí),x–2<0,ax–1≤x–1<0,
所以f ′(x)>0.
所以2不是f (x)的極小值點(diǎn).
綜上可知,a的取值范圍是(,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的六面體中,面是邊長(zhǎng)為2的正方形,面是直角梯形,,.
(1)求證:平面;
(2)若二面角為60°,求直線(xiàn)和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,證明:當(dāng)時(shí),;
(2)若在只有一個(gè)零點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)截圓所得的弦長(zhǎng)為.直線(xiàn)的方程為.
(1)求圓的方程;
(2)若直線(xiàn)過(guò)定點(diǎn),點(diǎn)在圓上,且,為線(xiàn)段的中點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義在上的函數(shù).①若存在,使成立,則函數(shù)在上單調(diào)遞增;②若存在,使成立,則函數(shù)在上不可能單調(diào)遞減;③若存在對(duì)于任意都有成立,則函數(shù)在上單調(diào)遞增.則以上述說(shuō)法正確的是_________.(填寫(xiě)序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是是的中點(diǎn).
(1)求證:平面;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①若函數(shù)滿(mǎn)足,則函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng);
②點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為;
③通過(guò)回歸方程可以估計(jì)和觀測(cè)變量的取值和變化趨勢(shì);
④正弦函數(shù)是奇函數(shù),是正弦函數(shù),所以是奇函數(shù),上述推理錯(cuò)誤的原因是大前提不正確.
其中真命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn) =1(a>0,b>0),過(guò)其左焦點(diǎn)F作x軸的垂線(xiàn),交雙曲線(xiàn)于A,B兩點(diǎn),若雙曲線(xiàn)的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線(xiàn)離心率的取值范圍是( )
A.(1, )
B.(1,2)
C.( ,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運(yùn)動(dòng) | 不喜好體育運(yùn)動(dòng) | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)概率不超過(guò)的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由.
(參考公式: )
臨界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com