【題目】已知雙曲線 =1(a>0,b>0),過其左焦點F作x軸的垂線,交雙曲線于A,B兩點,若雙曲線的右頂點在以AB為直徑的圓外,則雙曲線離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

【答案】B
【解析】解:由于雙曲線 =1(a>0,b>0),則直線AB方程為:x=﹣c, 因此,設A(﹣c,y0),B(﹣c,﹣y0),
=1,解之得y0= ,得|AF|=
∵雙曲線的右頂點M(a,0)在以AB為直徑的圓外,
∴|MF|>|AF|,即a+c> ,
將b2=c2﹣a2 , 并化簡整理,得2a2+ac﹣c2>0
兩邊都除以a2 , 整理得e2﹣e﹣2<0,
∵e>1,∴解之得1<e<2.
故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,證明:當時,;

(2)若只有一個零點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)=[]

若曲線y= fx在點(1,處的切線與軸平行,a

x=2處取得極小值,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于的一元二次方程有實數(shù)根,且,則下列結論中錯誤的個數(shù)是( )

(1)當時,;(2);(3)當時,;(4)二次函數(shù)的圖象與軸交點的坐標為(2,0)和(3,0)

A. 1B. 2C. 3D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京、張家口2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關代言,決定對旗下的某商品進行一次評估,該商品原來每件售價為25元,年銷售8萬件.

(1)據(jù)市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?

(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和營銷策略改革,并提高定價到元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的偶函數(shù),且滿足,若當時,,則函數(shù)在區(qū)間上零點的個數(shù)為 ( )

A. 2018 B. 2019 C. 4036 D. 4037

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,將沿折起,使平面平面.

(1)證明:平面;

(2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構通過對某企業(yè)今年的生產經營情況的調查,得到每月利潤(單位:萬元)與相應月份數(shù)的部分數(shù)據(jù)如表:

1

4

7

12

229

244

241

196

(1)根據(jù)如表數(shù)據(jù),請從下列三個函數(shù)中選取一個恰當?shù)暮瘮?shù)描述的變化關系,并說明理由,,

(2)利用(1)中選擇的函數(shù),估計月利潤最大的是第幾個月,并求出該月的利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則關于函數(shù)有如下說法:

的圖像關于軸對稱;

②方程的解只有;

③任取一個不為零的有理數(shù),對任意的恒成立;

④不存在三個點,,,使得為等邊三角形.

其中正確的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案