【題目】已知函數(shù).

Ⅰ)求曲線在點處的切線方程;

Ⅱ)求的單調(diào)區(qū)間;

Ⅲ)若對于任意,都有,求實數(shù)的取值范圍.

【答案】(Ⅰ) (Ⅱ)單調(diào)遞增區(qū)間是; 的單調(diào)遞減區(qū)間是(Ⅲ)答案見解析.

【解析】試題分析:Ⅰ)由f(1)=0,f′(1)=1;從而寫出切線方程即可;

(Ⅱ)根據(jù)導數(shù),求出導數(shù)等于0的根,分析導數(shù)函數(shù)值在根的左右的正負變化即可得出的單調(diào)區(qū)間;

(Ⅲ)當時,等價于”. ,求導研究單調(diào)性求出在區(qū)間上的最大值為,即可求出實數(shù)的取值范圍.

試題解析:

Ⅰ)因為函數(shù),

所以,

.

又因為

所以曲線在點處的切線方程為.

Ⅱ)函數(shù)定義域為

由(Ⅰ)可知, .

解得.

在區(qū)間上的情況如下:

x

極小值

所以, 的單調(diào)遞增區(qū)間是;

的單調(diào)遞減區(qū)間是.

Ⅲ)當時,等價于”.

, ,

, .

時, ,所以在區(qū)間單調(diào)遞減.

時, ,所以在區(qū)間單調(diào)遞增.

,

所以在區(qū)間上的最大值為.

所以當時,對于任意,都有.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對函數(shù)f(x)xsinx,現(xiàn)有下列命題:函數(shù)f(x)是偶函數(shù);函數(shù)f(x)的最小正周期是;0)是函數(shù)f(x)的圖象的一個對稱中心;函數(shù)f(x)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.其中是真命題的是________(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了迎接第二屆國際互聯(lián)網(wǎng)大會,組委會對報名參加服務(wù)的名志愿者進行互聯(lián)網(wǎng)知識測試,從這名志愿者中采用隨機抽樣的方法抽取人,所得成績?nèi)缦拢?/span> , , , , , , , .

(1)作出抽取的人的測試成績的莖葉圖,以頻率為概率,估計這志愿者中成績不低于分的人數(shù);

(2)從抽取的成績不低于分的志愿者中,隨機選名參加某項活動,求選取的人恰有一人成績不低于分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知線段AB的端點B的坐標為(3,0),端點A在圓上運動;

(1)求線段AB中點M的軌跡方程;

(2)過點C(1,1)的直線mM的軌跡交于GH兩點,當△GOHO為坐標原點)的面積最大時,求直線m的方程并求出△GOH面積的最大值.

(3)若點C(1,1),且PM軌跡上運動,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點的直線軸正半軸和軸正半軸分別交于,

1)當的中點時,求的方程

2)當最小時,求的方程

3)當面積取到最小值時,求的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關(guān)統(tǒng)計數(shù)據(jù)如下表所示:

(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?

(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某圖書公司有一款圖書的歷史收益率(收益率=利潤÷每本收入)的頻率分布直方圖如圖所示:

(1)試估計平均收益率;(用區(qū)間中點值代替每一組的數(shù)值)

(2)根據(jù)經(jīng)驗,若每本圖書的收入在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

據(jù)此計算出的回歸方程為

①求參數(shù)的估計值;

②若把回歸方程當作的線性關(guān)系, 取何值時,此產(chǎn)品獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,AB=a,AC=AD=b,BC=CD=DB=ca>0,b>0,c>0)該三棱錐的截面EFGH平行于ABCD,分別交ADAC、BCBDE、FG、H

(1)證明:ABCD

(2)求截面四邊形EFGH面積的最大值,并說明面積取最大值時截面的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,拋物線的焦點為,射線與拋物線相交于點,與其準線相交于點,則( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案