【題目】求分別滿足下列條件的直線l的方程:

(1)斜率是,且與兩坐標(biāo)軸圍成的三角形的面積是6;

(2)經(jīng)過兩點(diǎn)A(1,0)、B(m,1);

(3)經(jīng)過點(diǎn)(4,-3),且在兩坐標(biāo)軸上的截距的絕對值相等.

【答案】(1)yx±3.2當(dāng)m≠1時(shí),y (x1),當(dāng)m=1時(shí), x1.3xy=1或y=-x.

【解析】試題分析:(1)利用斜截式設(shè)出直線方程,得到直線的截距,表示三角形的面積,從而得到直線l的方程;(2)分三種情況討論,過原點(diǎn),不過原點(diǎn)斜率為1,不過原點(diǎn)斜率為-1,從而得到直線的方程

試題解析:

(1)設(shè)直線l的方程為yxb.

y=0,得x=-b

|b·(-b)|=6,b=±3.

直線l的方程為yx±3.

(2)當(dāng)m≠1時(shí),直線l的方程是

,即y (x-1)

當(dāng)m=1時(shí),直線l的方程是x=1.

(3)設(shè)lx軸、y軸上的截距分別為ab.

當(dāng)a≠0,b≠0時(shí),l的方程為=1;

直線過P(4,-3),∴=1.

∵|a|=|b|,

,解得,或.

當(dāng)ab=0時(shí),直線過原點(diǎn)且過(4,-3),

l的方程為y=-x.

綜上所述,直線l的方程為xy=1=1y=-x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 , 拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上各取兩個(gè)點(diǎn),其坐標(biāo)分別是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線L滿足條件:①過C2的焦點(diǎn)F;②與C1交與不同的兩點(diǎn)M,N且滿足 ?若存在,求出直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1(a1)xyb0l2axby40,求滿足下列條件的a,b的值.

(1)l1l2l1過點(diǎn)(1,1);

(2)l1l2l2在第一象限內(nèi)與兩坐標(biāo)軸圍成的三角形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差d>0,且a1>0,記Tn= + ++
(1)用a1、d分別表示T1、T2、T3 , 并猜想Tn;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對50名高中學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡打籃球

不喜歡打籃球

合計(jì)

男生

5

女生

10

合計(jì)

已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?
附:K2=

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的點(diǎn)P的坐標(biāo).

(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).

(2)∠MPN是直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知正方體ABCDA1B1C1D1.

(1)求證:平面A1BD∥平面B1D1C.

(2)若E,F分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD.

查看答案和解析>>

同步練習(xí)冊答案