【題目】互聯(lián)網(wǎng)+”時(shí)代的今天,移動(dòng)互聯(lián)快速發(fā)展,智能手機(jī)(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價(jià)格卻不斷下降,遠(yuǎn)低于蘋果;智能手機(jī)成為了生活中必不可少的工具,學(xué)生是對(duì)新事物和新潮流反應(yīng)最快的一個(gè)群體之一,越來越多的學(xué)生在學(xué)校里使用手機(jī),為了解手機(jī)在學(xué)生中的使用情況,對(duì)某學(xué)校高二年級(jí)名同學(xué)使用手機(jī)的情況進(jìn)行調(diào)查,針對(duì)調(diào)查中獲得的每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)的時(shí)間進(jìn)行分組整理得到如下的數(shù)據(jù):

使用時(shí)間(小時(shí))

1

2

3

4

5

6

7

所占比例

4%

10%

31%

16%

12%

2%

1)求表中的值;

2)從該學(xué)校隨機(jī)選取一名同學(xué),能否根據(jù)題目中所給信息估計(jì)出這名學(xué)生每天平均使用手機(jī)進(jìn)行娛樂活動(dòng)小于小時(shí)的概率?若能,請(qǐng)算出這個(gè)概率;若不能,請(qǐng)說明理由;

3)若從使用手機(jī)小時(shí)和小時(shí)的兩組中任取兩人,調(diào)查問卷,看看他們對(duì)使用手機(jī)進(jìn)行娛樂活動(dòng)的看法,求這人都使用小時(shí)的概率.

【答案】12)抽取到高二的學(xué)生能估計(jì),概率為,抽取到高一高三的學(xué)生不能估計(jì)(3

【解析】

由已知易知

分情況討論,當(dāng)抽到的是高二年級(jí)時(shí)可以估計(jì),若抽到高一、高三的同學(xué)則不能估計(jì);

抽取6人中編號(hào),寫出所有基本事件,找出滿足事件A的結(jié)果數(shù),求解.

由題設(shè)知,

樣本是從高二年級(jí)抽取的,

根據(jù)抽取的樣本只能估計(jì)該校高二年級(jí)學(xué)生每天使用手機(jī)進(jìn)行娛樂活動(dòng)的平均時(shí)間,不能估計(jì)全校學(xué)生情況.

若抽取的同學(xué)是高二年級(jí)的學(xué)生,

則可以估計(jì)這名同學(xué)每天平均使用手機(jī)小于小時(shí)的概率大約為:

;

若抽到高一、高三的同學(xué)則不能估計(jì);

由題設(shè)知,使用1小時(shí)的人共有:人,設(shè)為AB,CD,

使用7小時(shí)的共有人,設(shè)為ab,

從中任選2人有:AB,AC,AD,Aa,Ab,BC,BDBa,BbCD,Ca,CbDa,Db,ab15種情況,其中,這2人都使用7小時(shí)的只有ab,

所求概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,前項(xiàng)和為,若對(duì)任意的,均有是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.

1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;

2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對(duì)任意,成立?如果存在,求出這樣數(shù)列的所有可能值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù))

(1)若,求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;

(2)設(shè)點(diǎn),曲線C與直線 交于A、B兩點(diǎn),求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué).在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個(gè)學(xué)院.現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).

1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;

2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)小商店從一家食品有限公司購進(jìn)10袋白糖,每袋白糖的標(biāo)準(zhǔn)重量是500g,為了了解這些白糖的實(shí)際重量,稱量出各袋白糖的實(shí)際重量(單位:g)如下:503,502496,499491,498506,504,501,510

1)求這10袋白糖的平均重量和標(biāo)準(zhǔn)差s;

2)從這10袋中任取2袋白糖,那么其中恰有一袋的重量不在(s,s)的概率是多少?(附:5.0816.065.09,16.09

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程是t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是.

1)證明:直線l與曲線C相切;

2)設(shè)直線lx軸、y軸分別交于點(diǎn)A,B,點(diǎn)P是曲線C上任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買臺(tái)機(jī)器人的總成本萬元.

1)若使每臺(tái)機(jī)器人的平均成本最低,問應(yīng)買多少臺(tái)?

2)現(xiàn)按(1)中的數(shù)量購買機(jī)器人,需要安排人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀,經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的極大值為,其中為自然對(duì)數(shù)的底數(shù).

1)求實(shí)數(shù)的值;

2)若函數(shù),對(duì)任意,恒成立.

i)求實(shí)數(shù)的取值范圍;

ii)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x2+tx+1(其中實(shí)數(shù)t0).

1)已知實(shí)數(shù)x1,x2[1,1],且x1x2.若t3,試比較x1fx1+x2fx2)與x1fx2+x2fx1)的大小關(guān)系,并證明你的結(jié)論;

2)記gx,若存在非負(fù)實(shí)數(shù)x1,x2,xn+1,使gx1+gx2+…+gxn)=gxn+1)(nN*)成立,且n的最大值為8,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案